Những câu hỏi liên quan
PB
Xem chi tiết
CT
8 tháng 4 2019 lúc 10:29

Hàm số:

f x = - 2 x   nếu   x ≥ 0 sin x 2   nếu   x < 0

Không có đạo hàm tại x = 0 vì:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, với x < 0 thì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với x > 0 thì y’ = -2 < 0

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta thấy hàm số đạt cực đại tại x = 0 và y CD  = y(0) = 0.

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 1 2017 lúc 14:15

Hàm số có tập xác định D = R và liên tục trên R.

+ Chứng minh hàm số Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 không có đạo hàm tại x = 0.

Xét giới hạn Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 :

Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Không tồn tại giới hạn Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Hay hàm số không có đạo hàm tại x = 0.

+ Chứng minh hàm số đạt cực tiểu tại x = 0 (Dựa theo định nghĩa).

Ta có : f(x) > 0 = f(0) với ∀ x ∈ (-1 ; 1) và x ≠ 0

⇒ Hàm số y = f(x) đạt cực tiểu tại x = 0.

Bình luận (0)
SK
Xem chi tiết
H24
31 tháng 3 2017 lúc 10:16

Đặt . Giả sử x > 0, ta có :

Do đó hàm số không có đạo hàm tại x = 0 . Tuy nhiên hàm số đạt cực tiểu tại x = 0 vì .

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 8 2019 lúc 3:31

Giải bài tập Toán 12 | Giải Toán lớp 12

Vậy không tồn tại đạo hàm của hàm số tại x = 0.

Nhưng dựa vào đồ thị của hàm số y = |x|. Ta có hàm số đạt cực trị tại x = 0.

Bình luận (0)
SK
Xem chi tiết
NH
23 tháng 5 2017 lúc 13:35

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 9 2018 lúc 14:58

Giải bài 4 trang 156 sgk Đại Số 11 | Để học tốt Toán 11

⇒ Không tồn tại đạo hàm của f(x) tại x = 0.

Giải bài 4 trang 156 sgk Đại Số 11 | Để học tốt Toán 11

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 1 2017 lúc 13:39

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 20:18

\(y = \left| x \right| = \left\{ \begin{array}{l}x\,\,\,(x \ge 0)\\ - x\,\,\,(x < 0)\end{array} \right. \Rightarrow y' = \left\{ \begin{array}{l}1\,\,\,(x \ge 0)\\ - 1\,\,\,(x < 0)\end{array} \right.\)

Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} y' = 1 \ne  - 1 = \mathop {\lim }\limits_{x \to {0^ - }} y'\)

Vậy không tồn tại đạo hàm của hàm số tại x = 0

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 12 2017 lúc 4:15

Đáp án C

Bình luận (0)