Cho cos α = 4 5 và sin α < 0 , sin β = 3 4 và cos β > 0 . Khi đó sin α + β bằng
A. 3 7 16 - 12 25
B. 4 7 - 9 20
C. - 3 7 + 12 20
D. 12 - 3 7 20
Cho biết 0≤α≤π20≤α≤π2 sao cho
sin3(α)+cos3(α)=1sin3(α)+cos3(α)=1
Và β=sin(α)+cos(α)β=sin(α)+cos(α)
a) Tính ∑α=07π2(sin−1(β)+α)∑α=07π2(sin−1(β)+α)
b) Chứng minh rằng số ββ thỏa đề bài là nghiệm của phương trình: β3−6β+5=0
Cho sin α+β= \(\dfrac{1}{3}\),tanα=-2tanβ
Tính A= sin(α+\(\dfrac{3\pi}{8}\)).cos(α+\(\dfrac{\pi}{8}\))+sin(β-\(\dfrac{5\pi}{12}\)).sin(β-\(\dfrac{\pi}{12}\))
Để giải bài toán này, ta sẽ sử dụng các công thức và quy tắc trong lượng giác để tính toán.
Trước hết, ta có: sin(α+β) = sinα.cosβ + cosα.sinβ cos(α+β) = cosα.cosβ - sinα.sinβ
Đề bài cho α+β = 1313 và tanα = -2tanβ. Ta có thể suy ra các thông tin sau: tanα = -2tanβ => sinα/cosα = -2sinβ/cosβ => sinα.cosβ = -2sinβ.cosα
Bài toán yêu cầu tính A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12)
Để tính A, ta sẽ thay các giá trị đã biết vào công thức trên:
A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12))
Tuy nhiên, để tính giá trị chính xác của A, cần biết thêm giá trị cụ thể của α và β. Trong câu hỏi của bạn, không có thông tin về α và β, do đó không thể tính toán giá trị của A.
Cho α , β thỏa mãn sin α + sin β = 2 2 ; cos α + cos β = 6 2 . Tính cos α - β .
A. cos α - β = 0
B. cos α - β = 2 2
C. cos α - β = 3 2
D. cos α - β = 1 2
Tìm đẳng thức đúng
A. sin α = sin β B. sin α = cos β
C. sin α = tg β D. sin α = cotg β
Chứng minh: sin α. cos β = sin(α + β) + sin(α − β) 2
* Dựng \(\Delta OAB\)vuông tại A có: \(\widehat{AOB}=\alpha\)
Dựng \(\Delta OBC\)vuông tại B có: \(\widehat{BOC}=\beta\)và OC = 1 (đơn vị độ dài)
Từ C hạ \(CD\perp OA\)tại D \((D\in OA)\)
Từ B hạ \(BH\perp CD\)tại H (\(H\in CD\))
Ta có: \(\widehat{AOB}=\widehat{BCD}=\widehat{BCH}=\alpha\)(góc có cạnh tương ứng vuông góc)
Xét \(\Delta BOC\)có: \(\sin\beta=\frac{BC}{OC}=\frac{BC}{1}\Rightarrow BC=\sin\beta\)
\(\cos\beta=\frac{OB}{OC}=\frac{OB}{1}\Rightarrow OB=\cos\beta\)
Xét \(\Delta OAB\)có: \(\sin\alpha=\frac{AB}{OB}=\frac{AB}{\cos\beta}\Rightarrow AB=\sin\alpha.\cos\beta\)
Xét \(\Delta BCH\)có: \(\cos\alpha=\frac{CH}{BC}=\frac{CH}{\sin\beta}\Rightarrow CH=\cos\alpha.\sin\beta\)
Xét \(\Delta ODC\)có: \(\sin\left(\alpha+\beta\right)=\frac{DC}{OC}=\frac{DC}{1}=DC\)
Mà DC = DH + CH = AB + CH
=> \(\sin\left(\alpha+\beta\right)=\sin\alpha.\cos\beta+\cos\alpha.\sin\beta\)(1)
Cách dựng tương đối giống ở trên khác ở chỗ : OB =1 (đơn vị độ dài), \(\widehat{OCB}=90^o\), \(\widehat{BOC}=\beta,\widehat{AOB}=\alpha-\beta\),\(\widehat{AOC}=\alpha\)
Ta có: \(\widehat{BCH}=\widehat{BCD}=\widehat{AOC}=\alpha\)(góc có cạnh tương ứng vuông góc)
Xét \(\Delta BOC\)có: \(\sin\beta=\frac{BC}{OB}=\frac{BC}{1}=BC\Rightarrow BC=\sin\beta\)
\(\cos\beta=\frac{OC}{OB}=\frac{OC}{1}=OC\Rightarrow OC=\cos\beta\)
Xét \(\Delta OCD\)có:
\(\sin\alpha=\frac{CD}{OC}=\frac{CD}{\cos\beta}\Rightarrow CD=\sin\alpha.\cos\beta\)
Xét \(\Delta BCH\)có:
\(\cos\alpha=\frac{CH}{BC}=\frac{CH}{\sin\beta}\Rightarrow CH=\cos\alpha.\sin\beta\)
Xét \(\Delta OAB\)có:
\(\sin\left(\alpha-\beta\right)=\frac{AB}{OB}=\frac{AB}{1}=AB\)
Mà AB=DH= CD -CH = \(\sin\alpha.\cos\beta-\cos\alpha.\sin\beta\)
=> \(\sin\left(\alpha-\beta\right)=\sin\alpha.\cos\beta-\cos\alpha.\sin\beta\)(2)
Cộng từng vế của (1) và (2) ta được:
\(\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)=2.\sin\alpha.\cos\beta\)=> \(\sin\alpha.\cos\beta=\frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2}\)(đpcm)
Cho các góc α, β nhọn và α < β.
CMR : cos(β – α) = cos β. cos α + sin β.sin α .
Tìm đẳng thức đúng:
A. cos α = cos β B. cos α = tg β
C. cos α = cotg β D. cos α = sin β
a, bt sin α=3/5, tính A= 5 \(sin^2\)α + 6\(cos^2\)α.
b,bt cos α= 4/5, tính B= 4\(sin^2\)α - 5\(cos^2\)α.
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)
Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)
\(=5\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha\)
\(=5+\dfrac{16}{25}=\dfrac{141}{25}\)
Tìm đẳng thức đúng:
A. tg α = tg β B. tg α = cotg β
C. tg α = sin β D. tg α = cos β
Tìm đẳng thức đúng:
A. cotg α = tg β B. cotg α = cotg β
C. cotg α = cos β D. cotg α = sin β