Những câu hỏi liên quan
VC
Xem chi tiết
HH
24 tháng 8 2017 lúc 21:32

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

Bình luận (0)
H24
Xem chi tiết
TM
Xem chi tiết
DH
17 tháng 5 lúc 23:10

\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)

Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:

\(ab^2-3a+b+2=0\)

\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)

\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)

\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)

\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)

mà 2 không chính phương

\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)

đến đây bạn tự giải tiếp

 

Bình luận (0)
AV
Xem chi tiết
HT
Xem chi tiết
NL
24 tháng 3 2022 lúc 23:48

\(y^2\left(y^2-1\right)+2y\left(y^2-1\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+2y\right)\left(y^2-1\right)-x^2-x=0\)

\(\Leftrightarrow y\left(y+1\right)\left(y-1\right)\left(y+2\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+y\right)\left(y^2+y-2\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+y\right)^2-2\left(y^2+y\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+y-1\right)^2-1-x^2-x=0\)

\(\Leftrightarrow\left(2y^2+2y-2\right)^2-\left(2x+1\right)^2-3=0\)

\(\Leftrightarrow\left(2y^2+2y-2x-3\right)\left(2y^2+2y+2x-1\right)=3\)

Pt ước số

Bình luận (0)
HT
Xem chi tiết
NT
Xem chi tiết
BH
Xem chi tiết
HP
Xem chi tiết
DH
26 tháng 8 2021 lúc 17:43

\(x^2-2y^2-xy+2x-y-2=0\)

\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)

Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).

Ta có bảng giá trị: 

x+y+1-3-113
x-2y+1-1-331
x-10/3 (l)-8/3 (l)2/3 (l)4/3 (l)
y    

Vậy phương trình đã cho không có nghiệm nguyên. 

Bình luận (0)
 Khách vãng lai đã xóa