Cho M = x 3 + y 3 và N=(x+y) x 2 - x y - y 2 . Khi x = - 4;y = - 2 hãy so sánh M và N.
A. M<N
B. M=N
C. M>N
D. M≠N
a) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3
b) Cho x-y=m; x^2+y^2=n. Tính x^3-y^3 theo m và n
a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)
b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)
1, cho các đa thức:
P(x)=2x^4 -x-2x^3+1
Q(x)=5x^2-x^3+4x
H(x)=-2x^4 +x^2+5
Tính P(x) + Q(x) + H(x) và P(x) - Q(x) - H(x)
2, Cho các đa thức:
N=15y^3+5y^2-y^5-5y^2-4y^3-2y
M=y^2+y^3-3y+1-y^2+y^5-y^3+7y^5
a,Thu gọn các đa thức trên
b,Tính N+M và N-M
mình khuyên bạn nên đưa lên từng câu một thôi chứ bạn đưa lên dài thế này ai nhìn cũng khong muốn làm đâu nha
BẠN HÃY DÙNG Fx ĐỂ GHI CHO DỄ HIỂU NHÉ BẠN
b1 Cho x+y=-1 và xy=-12 tính gt của B:
a,A=x^2+2xy+y^2
b,B=x^2+y^2
c,C=x^3+3x^2y+3xy^2+y^3
d,D=x^3+y^3
b2 cho x-y=-3 và xy=10 tínhN
M=x^2-2xy+y^2
N=x^2+y^2
P=x^3-3x^2y+3xy^2-y^3
Q=x^3-y^3
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
cho x+y=m và x^2 + y^2=n. Tính giá tị biểu thức sau
P= x^3+y^3
\(\hept{\begin{cases}x+y=m\\x^2+y^2=n\end{cases}\Rightarrow x^2+2xy+y^2=m^2\Rightarrow xy=\frac{m^2-n}{2}}\)
P =\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=m.\left(n-\frac{m^2-2}{2}\right)\)
\(=m.\frac{3n-m^2}{2}=\frac{3mn-m^3}{2}\)
Xét hai phân thức \(M = \dfrac{x}{y}\) và \(N = \dfrac{{{x^2} + x}}{{xy + y}}\)
a) Tính giá trị của các phân thức trên khi \(x = 3\), \(y = 2\) và khi \(x = - 1\), \(y = 5\).
Nêu nhận xét về giá trị của \(M\) và \(N\) khi cho \(x\) và \(y\) nhận những giá trị nào đó (\(y \ne 0\) và \(xy - y \ne 0\)).
b) Nhân tử thức của phân thức này với mẫu thức của phân thức kia, rồi so sánh hai đa thức nhận được.
a) Điều kiện xác định của phân thức \(M\): \(y \ne 0\)
Điều kiện xác định của phân thức \(N\): \(xy + y \ne 0\) hay \(xy \ne - y\)
Khi \(x = 3\), \(y = 2\) (thoả mãn điều kiện xác định), ta có:
\(M = \dfrac{3}{2}\)
\(N = \dfrac{{{3^2} + 3}}{{3.2 + 2}} = \dfrac{{9 + 3}}{{6 + 2}} = \dfrac{{12}}{8} = \dfrac{3}{2}\)
Vậy \(M = N = \dfrac{3}{2}\) khi \(x = 3\), \(y = 2\)
Khi \(x = - 1\), \(y = 5\) (thỏa mãn điều kiện xác định của \(M\)) ta có:
\(M = \dfrac{{ - 1}}{5}\)
Vậy \(M = \dfrac{{ - 1}}{5}\) khi \(x = - 1\), \(y = 5\)
Khi \(x = - 1\), \(y = 5\) thì \(xy + y = \left( { - 1} \right).5 + 5 = 0\) nên không thỏa mãn điều kiện xác định của \(N\). Vậy giá trị của phân thức \(N\) tại \(x = - 1\), \(y = 5\) không xác định.
b) Ta có:
\(x.\left( {xy + y} \right) = {x^2}y + xy\)
\(\left( {{x^2} + x} \right).y = {x^2}y + xy\)
Vậy \(x\left( {xy + y} \right) = \left( {{x^2} + x} \right)y\)
1) Làm tính nhân: a) (3-2*x+4*x^2)*(1+x-2*x^2). b) (a^2+a*x+x^2)*(a^2-a*x+x^2)*(a-x). 2) Cho đa thức: A=19*x^2-11*x^3+9-20*x+2*x^4. B=1+x^2-4*x Tìm đa thức Q và R sao cho A=B*Q+R. 3) Dùng hằng đẳng thức để làm phép chia: a) (4*x^4+12*x^2*y^2+9*y^4):(2*x^2+3*y^2). b) ( 64*a^2*b^2-49*m^4*n^2):(8*a*b+7*m^2*n). c) (27*x^3-8*y^6):(3*x-2*y^2)
Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó
Thì các bạn vít ra giấy là hỉu nk mong giải giúp mk cái
cho x,y>0 thỏa mãn x^2+y^3>=x^3+y^4. cmr x^3+y^3=<2
\(x^2+y^3+y^2\ge x^3+y^4+y^2\ge x^3+2y^3\Rightarrow x^2+y^2\ge x^3+y^3\)
Lại có \(\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)
\(\Rightarrow\left(x^2+y^2\right)^2\le\left(x+y\right)\left(x^2+y^2\right)\Rightarrow x^2+y^2\le x+y\)
\(\Rightarrow\left(x^2+y^2\right)^2\le\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\le2\Rightarrow x^3+y^3\le2\)
Dấu "=" xảy ra khi \(x=y=1\)
Cho x y thỏa mãn x+y+1/x+1/y=8
x^2+y^2+1/x^2+1/y^2=30
Tính P=x^3+y^3+1/x^3+1/y^3
Cho hai số x và y thỏa mãn điều kiện : 3*x + y =1
a, tìm GTNN của biểu thức M= 3*x^2 + y^2
b, Tìm GTLN của biểu thức N= x*y
Ta có: 3x + y = 1 => y = 1 - 3x
a, Thay y = 1 - 3x vào M, ta có:
\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)
\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)
Vậy GTNN M = 1/4 khi x = y = 1/4
b, Thay y = 1 - 3x vào N
\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)
\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)
Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)
Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2