Cho 4 x 2 + 4 x - 3 2 - 4 x 2 + 4 x + 3 2 = m . x ( x + 1 ) với m Є R. Chọn câu đúng về giá trị của m.
A. m > 47
B. m < 0
C. m ⁝ 9
D. m là số nguyên tố
cho Q=(x^2+x-2)/(x^2-x-2)=5.Tính P=(x^4+x-4)/(x^4-x-4)
Cho đa thức \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\).
Tìm các đa thức N(x), Q(x) sao cho:
\(N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\)
và \(M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\)
Theo đề bài ta có \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\)
\(\begin{array}{l}M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\\ \Rightarrow Q(x) = (6{x^5} - {x^4} + 3{x^2} - 2) - (2{x^4} - 5{x^3} + 7{x^2} + 3x)\\ \Rightarrow Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2 - 2{x^4} + 5{x^3} - 7{x^2} - 3x\\Q(x) = 6{x^5} - 3{x^4} + 5{x^3} - 4{x^2} - 3x - 2\end{array}\)
Theo đề bài ta có :
\(\begin{array}{l}N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\\ \Rightarrow N(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7 + 2{x^4} - 5{x^3} + 7{x^2} + 3x\\ \Rightarrow N(x) = - 2{x^4} - 7{x^3} + 13{x^2} + 3x + 7\end{array}\)
(x-1)(x-2)(x-3)(x-4)-80chia hết cho x^2-5x
và x^8-2x^5-2x^4+x^2-2x-100+10x(x^4+x)+(5x-1)^2chia hết cho x^2-5x-4
Cho x,y khác 0 tìm Min
P=x^4/y^4 + y^4/x^4 - x^2/y^2 - y^2/x^2 + x/y + y/x
Cho hai đa thức:
\(A(x) = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6\) và \(B(x) = - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4}\).
a) Tìm đa thức M(x) sao cho \(M(x) = A(x) + B(x)\).
b) Tìm đa thức C(x) sao cho \(A(x) = B(x) + C(x)\).
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
cho (x2+x-2)/(x2-x-2)=5. tính (x4+x-4)/(x4-x-4)
1) tìm số dư của các phép chia sâu đây :
a) x^4 -2 chia cho x^2+1
b)x^4+x^3+x^2+x chia cho x^2-1
c) x^99+x^55+x^11+x+7 cho x^2+1
2) tìm a để đa thức : x^2-3x+a chia hết cho x+2
4. tìm a và b để x^4+x^3+ax^2+4x+b chi hết cho x^2-2x+2
5. tìm số dư trong phép chia (x+2)(x+3)(x+4)(x+5)+2018 cho x^2 + 7x+3
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
Cho Q = ( x^2 + x - 2) / ( x^2 - x - 2 ) ; R = ( x^4 + x - 4 ) / ( x^4 - x - 4 ) ( x khác 0; -1; 1 ). Gía trị của R khi Q = 5.
Bài 1. Cho hai đa thức \(f\)(\(x\))= 5\(x\)4+4\(x\)2-2\(x\)+7 và \(g\)(\(x\))=4\(x\)4-2\(x\)3+3\(x\)2+4\(x\)-1
Tính \(f\)(\(x\)) + \(g\)(\(x\)) và \(f\)(\(x\)) - \(f\)(\(x\))
Bài 2. Thực hiện phép nhân.
a) (\(x\) + 3).(\(x\) - 1) b) (4\(x\) + 3).(\(x\)- 2)
c) (2\(x\) + 3).(\(x\) + 1) d) (5\(x\)-2).(\(x\)2- 3\(x\) + 1)
Bài 3. Tính giá trị biểu thức.
a) M=3\(x\)2-2\(x\).(\(x\)-5)+\(x\).(\(x\)-7) tại \(x\)=5
b) J=-3\(x\)2+4\(x\)-5.(\(x\)-2) tại \(x\)=-5
c) N=4\(x\).(2\(x\)-3)-5\(x \).(\(x\)-2) tại\(x\)=1
`1,`
`f(x)+g(x)=(5x^4+4x^2-2x+7)+(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7+4x^4-2x^3+3x^2+4x-1`
`=(5x^4+4x^4)-2x^3+(4x^2+4x^2)+(-2x+4x)+(7-1)`
`= 9x^4-2x^3+8x^2+2x+6`
Đề phải là `f(x)-g(x)` chứ nhỉ :v?
`f(x)-g(x)=(5x^4+4x^2-2x+7)-(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7-4x^4+2x^3-3x^2-4x+1`
`= (5x^4-4x^4)+2x^3+(-2x-4x)+(4x^2-3x^2)+(7+1)`
`= x^4+2x^3-6x+x^2+8`
`2,`
`a, (x+3)(x-1)`
`= x(x-1)+3(x-1)`
`= x*x+x*(-1)+3*x+3*(-1)`
`=x^2-x+3x-3`
`= x^2+2x-3`
`b, (4x+3)(x-2)`
`= 4x(x-2)+3(x-2)`
`= 4x*x+4x*(-2)+3*x+3*(-2)`
`= 4x^2-8x+3x-6`
`c, (2x+3)(x+1)`
`= 2x(x+1)+3(x+1)`
`= 2x*x+2x*1+3*x+3*1`
`= 2x^2+2x+3x+3`
`= 2x^2+5x+3`
`d, (5x-2)(x^2-3x+1)`
`= 5x(x^2-3x+1)+(-2)(x^2-3x+1)`
`= 5x*x^2+5x*(-3x)+5x*1+(-2)*x^2+(-2)*(-3x)+(-2)*1`
`= 5x^3-15x^2+5x-2x^2+6x-2`
`= 5x^3-17x^2+11x-2`
Cho f(x) = 1^4 +2^4+.....+n^4. Tìm f(x) bậc 5 sao cho f(x+1) - f(x) = x^4