khi triển khai đa thức x^2-16 ta có kq là:
cho đa thức F(x)= (2017x-2018)2019
khi khai triển ta đc đa thức bậc 2019
Tính tổng các hệ số của các số hạng của đa thức sau khi khai triển
đáp án =-1
Bài 3: Cho đa thức H(x) = ( 2x – 1)20.
a) Tính tổng hệ số của đa thức H(x) khi khai triển .
b) Tính tổng hệ số bậc chẵn trừ tổng hệ số bậc lẽ của đa thức H(x) khi khai triển .
Tổng các hệ số của đa thức f(x)= (2x-5)2 khi triển khai hằng đẳng thức là...
f(x) = (2x - 5)2 = 4x2 - 20x + 25.Tổng các hệ số của đa thức f(x) được triển khai là : 4 - 20 + 25 = 9
Cho đa thức q(x) = (3x3 - 2x2 + 3x - 4)10 khi khai triển đa thức q(x) ta được đa thức f(x) . Sắp xếp theo thứ tự giảm dần của biến. Tính tổng các hệ số f(x).
Chào bạn. Mời bạn tham khảo ứng dụng tự động cân bằng phương trình và từ điển phương trình hóa học trên điện thoại. Android: https://goo.gl/jv8qfC . IOS(Iphone): https://goo.gl/BQ2Kqo . Clip hướng dẫn: https://youtu.be/qDpsKPwPAto . Bạn copy link vào trình duyệt nhé!
Tổng các hệ số của f(x) cũng là tổng các hệ số của q(x)
Tổng hệ số của q(x) là giá trị của q(x) tại x=1
\(q\left(1\right)=\left(3.1^3-2.1^2+3.1-4\right)^{10}=0\)
Cho đa thức q(x) = (3x3 - 2x2 + 3x - 4)10 khi khai triển đa thức q(x) ta được đa thức f(x) . Sắp xếp theo thứ tự giảm dần của biến. Tính tổng các hệ số f(x).
Cho đa thức P(x)=(x-2)^2009. Tìm tổng các hệ số của đa thức sa khi đã khai triển
Mình viết lộn cái kia phải là đa thức sau
Cho đa thức f(x)=\(\left(x+2\right)^{2021}\).Biết rằng sau khi khai triển và thu gọn ta được:
f(x)=\(a_{2021}\)\(x^{2021}\)+\(a_{2020}\)\(x^{2020}\)+...+\(a_3\)\(x^3\)+\(a_2\)\(x^2\)\(a_1\)\(x\)+\(a_0\)
2. Trong khai triển nhị thức ( a +2)^n +6 ( n€N). Có tất cả 17 số hạng . Vậy n bằng?
6. Trong khai triển (2a -1)^6 tổng 3 số hạng đầu là?
7. Trong khai triển ( x - √y )^16 tổng hai số hạng cuối là
2/ \(\left(a+b\right)^k\Rightarrow k+1\left(so-hang\right)\)
\(\Rightarrow n+6+1=17\Rightarrow n=10\)
6/ \(\left(2a-1\right)^6=\sum\limits^6_{k=0}C^k_6.2^{6-k}.\left(-1\right)^k.a^{6-k}\)
\(\Rightarrow tong-3-so-hang-dau=C^0_6.2^6+C^1_6.2^5.\left(-1\right)+C^2_6.2^4.\left(-1\right)^2=...\)
7/ \(\left(x-\sqrt{y}\right)^{16}=\left(x-y^{\dfrac{1}{2}}\right)^{16}\)
\(\Rightarrow tong-2-so-hang-cuoi=C^{16}_{16}+C^{15}_{16}=...\)
Khai triển hằng đẳng thức \(\left(x-4\right)^2\) ta được kết quả là:
A. \(x^2\) – 4x + 16. B. \(x^2\) – 8x + 16. C. \(x^2\) + 4x + 16. D. \(x^2\) + 8x + 16.