Chứng tỏ rằng:1+1²+1³+...+1^2004 chia hết cho 7
Biết rằng A=717 + 17. 3 - 1 chia hết cho 9. Chứng tỏ B = 718 + 18.3-1 chia hết cho 9
73=343 đồng dư với 1(mod 9)
=>(73)6=718 đồng dư với 1(mod 9)
=>718=9k+1
=>B=9k+1+18.3-1=9k+18.3=9(k+2.3) chia hết cho 9
=>đpcm
Bài 1 : Chứng tỏ rằng
a) 94260 - 35137 chia hết cho 5
b) 995 - 984 + 973 - 962 chia hết cho2 và 5
Bài 2 : Cho n thuộc N . Chưng tỏ rằng 5n - 1 chia hết cho 4
Bài 3 : Cho n thuộc N . Chứng tỏ rằng n2 + n + 1 không chia hết cho cả 2 và 5
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Bài 1 . Chứng tỏ rằng : ( n + 2 ) chia hết cho ( n - 2 )
đề của bạn hơi có vấn đề.Nếu n=5 thì n+2=7,n-2=3.
7 không chia hết cho 3
Cho 10k -1 chia hết cho 19 với k>1 . Chứng tỏ rằng 102k -1 chia hết cho 19 ; 103k -1 chia hết cho 19
Gọi A = n2 + n + 1 (n ∈ N). Chứng tỏ rằng: A không chia hết cho 2.
Ta có: n2 + n + 1 = n(n + 1) + 1
Ta có n(n + 1) ⋮ 2 vì n(n + 1) là tích của hai số tự nhiên liên tiếp.
Mà 1 không chia hết cho 2
Do đó n(n + 1) + 1 không chia hết cho 2.
Gọi A = n2 + n + 1 (n ∈ N). Chứng tỏ rằng: A không chia hết cho 5
Ta có: n2 + n + 1 = n(n + 1) + 1
Ta có n(n + 1) là tích của hai số tự nhiên liên tiếp nên tận cùng bằng 0, 2, 6. Suy ra n(n + 1) + 1 tận cùng bằng 1, 3, 7 nên n2 + n + 1 không chia hết cho 5.
Cho 10k -1 chia hết cho 19 với k>1 . Chứng tỏ rằng 102k -1 chia hết cho 19 ; 103k -1 chia hết cho 19
chứng tỏ rằng với cùng 1 số TN n không thể có đồng thời 7n - 1 chia hết cho 4 và 5n + 3 chia hết cho 12
nhanh nha
Cho B = 1 + 4 + 42 + 43 + 44 + 45 + ... + 436 + 437 + 438 Chứng tỏ rằng B chia hết cho cả 21
\(B=\left(1+4+4^2\right)+...+4^{36}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{36}\right)⋮21\)