Những câu hỏi liên quan
TP
Xem chi tiết
NK
20 tháng 5 2019 lúc 15:57

khó quá

Bình luận (0)
PQ
20 tháng 5 2019 lúc 18:59

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

Bình luận (0)
PQ
21 tháng 5 2019 lúc 9:56

nhầm r >_< sửa lại chỗ này nhé 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)< 0\\b\left(3-b\right)< 0\\c\left(3-c\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3a< a^2\\3b< b^2\\3c< c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)>3\left(a+b+c\right)-\left(a+b+c\right)=6>0\) :))

Bình luận (0)
ND
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
NL
1 tháng 3 2022 lúc 15:36

Đặt \(f\left(x\right)=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)

Hàm \(f\left(x\right)\) hiển nhiên liên tục trên R

Do vai trò a;b;c như nhau, không mất tính tổng quát giả sử \(a< b< c\)

\(f\left(a\right)=\left(a-b\right)\left(a-c\right)\)

\(f\left(b\right)=\left(b-a\right)\left(b-c\right)\)

\(f\left(c\right)=\left(c-a\right)\left(c-b\right)\)

\(f\left(a\right).f\left(b\right)=\left(a-b\right)\left(a-c\right)\left(b-a\right)\left(b-c\right)=\left(a-b\right)^2\left(c-a\right)\left(b-c\right)\)

Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}c-a>0\\b-c< 0\end{matrix}\right.\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b)

\(f\left(b\right).f\left(c\right)=\left(b-a\right)\left(b-c\right)\left(c-a\right)\left(c-b\right)=\left(b-c\right)^2\left(a-b\right)\left(c-a\right)\)

Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}a-b< 0\\c-a>0\end{matrix}\right.\) \(\Rightarrow f\left(b\right).f\left(c\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (b;c)

Vậy pt đã cho luôn có 2 nghiệm phân biệt

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 10 2019 lúc 11:40

Giả sử z 1 ; z 2  là các nghiệm của phương trình  a z 2 + bz + c = 0 với z 1 = 1  

Theo định lí Viet ta có:

z 1 z 2 = c a ⇔ z 2 = c a 1 z 1 ⇒ z 2 = c a . 1 z 1 = 1  

Bởi vì

z 1 + z 2 = - b a a = b ⇒ z 1 + z 2 2 = 1  

Suy ra 

z 1 + z 2 z 1 + z 2 1 ⇔ z 1 + z 2 1 z 1 + 1 z 2 = 1 ⇔ z 1 + z 2 2 = z 1 z 2 ⇔ b 2 = a c

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 8 2017 lúc 15:18

Đáp án C

Nếu ba đường thẳng a,b,c đôi một cắt nhau và không đồng phẳng thì chúng chỉ có thể đồng quy tại một điểm.

Bình luận (0)
PB
Xem chi tiết
LK
27 tháng 3 2020 lúc 12:37

Cách này của mình là suy đoán thui nha

Từ HPT trên: \(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=\frac{x}{a-p}+\frac{y}{b-p}+\frac{z}{c-p}\)

\(\Leftrightarrow\left(p-q\right)\left[\frac{x}{\left(a-p\right)\left(a-q\right)}+\frac{y}{\left(b-p\right)\left(b-q\right)}+\frac{z}{\left(c-q\right)\left(c-p\right)}\right]=0\)

Chia TH:

TH1:p=q

Tương tự p=r thì cũng thu về p=q=r

TH2: nguyên cái trong ngoặc vuông

Tương đương với: \(ax+by+cz=r\left(x+y+z\right)\)

Tương tự: \(\hept{\begin{cases}ax+by+cz=p\left(x+y+z\right)\\ax+by+cz=q\left(x+y+z\right)\end{cases}}\)

Cũng thu đc p=q=r

Do đó từ 2 TH cũng thu về PT:

\(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=1\)

Rồi vậy không biết làm tiếp :D

Bình luận (0)
 Khách vãng lai đã xóa
PB
27 tháng 3 2020 lúc 16:35

À, xin lỗi, mình đánh bị thiếu điều kiện, mình sửa lại rồi đó

Bình luận (0)
 Khách vãng lai đã xóa
PN
7 tháng 4 2020 lúc 21:42

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

Bình luận (0)
 Khách vãng lai đã xóa
ST
Xem chi tiết
H24
22 tháng 3 2019 lúc 21:30

kb nhé

Bình luận (0)
NA
8 tháng 5 2019 lúc 20:37

12345x331=...///???......................ai nhanh  mk tk cho

Bình luận (0)
NA
8 tháng 5 2019 lúc 20:41

mk ko biet dang  cau  hoi nen phai the thoi mong  cac ban thon  cam

Bình luận (0)
An
Xem chi tiết