Những câu hỏi liên quan
NV
Xem chi tiết
NV
29 tháng 8 2023 lúc 19:23

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
NT
29 tháng 8 2023 lúc 19:25

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

Bình luận (0)
MA
Xem chi tiết
MN
26 tháng 7 2021 lúc 16:13

1. D

2. Lỗi

3. A

Bình luận (0)
H24
26 tháng 7 2021 lúc 16:17

1D

2A

3A

Bình luận (0)
NT
26 tháng 7 2021 lúc 22:55

Câu 1: D

Câu 3: A

Bình luận (0)
TN
Xem chi tiết
ND
Xem chi tiết
NT
14 tháng 11 2023 lúc 21:40

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

Bình luận (0)
H24
Xem chi tiết
NL
22 tháng 6 2017 lúc 16:24

Ta có

\(\frac{a+1}{a}=3\Leftrightarrow a+1=3a\Leftrightarrow2a=1\Leftrightarrow a=0,5.\)

Thay a=0,5 vào a^2+1/a^2 ta được

\(a^2+\frac{1}{a^2}=0,5^2+\frac{1}{0,5^2}=4,25\)

Làm tương tự với các câu còn lại

Bình luận (0)
H24
22 tháng 6 2017 lúc 16:25

cam on ban

Bình luận (0)
NL
22 tháng 6 2017 lúc 17:02

cam on cai gi, k đi

Bình luận (0)
HT
Xem chi tiết
NH
Xem chi tiết
TN
21 tháng 10 2023 lúc 19:48

A=1+3+32+...+37

3A=3+32+33+...+38

3A-A=(3+32+33+...+38)-(1+3+32+...+37)

2A=38-1

A=(38-1):2

mà vì chia 2 nên chắc chắn A chia hết cho 2

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
SG
29 tháng 6 2016 lúc 14:14

\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\) 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2A-A=1-\frac{1}{2^{99}}\)

\(A=1-\frac{1}{2^{99}}< 1\)

\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\)

Ủng hộ mk nha ^_^

Bình luận (0)
VH
Xem chi tiết
H24
26 tháng 9 2017 lúc 13:02

Ta có :

M = 2( a3 + b3 ) - 3( a2 + b2 ) 

    = 2( a + b ) ( a2 - ab + b2 ) - 3( a2 + b2 ) 

    = 2( a2 - ab + b2 ) - 3 ( a2 + b

   = 2a2 - 2ab + 2b2 - 3a2 - 3b2 

   = -a2 - 2ab - b2 

   = - ( a + b )2

   = -1 

Bình luận (0)
VL
22 tháng 12 2018 lúc 19:43

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

Bình luận (0)