Những câu hỏi liên quan
LN
Xem chi tiết
NT
2 tháng 8 2021 lúc 23:53

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 23:54

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

Bình luận (0)
NH
Xem chi tiết
NH
14 tháng 8 2021 lúc 23:53

\(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m^2-3\right)=4-2m\)

Để pt có 2 nghiệm pb : \(m< 2\)

Theo định lí vi - et :

\(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1.x_2=m^2-3\end{matrix}\right.\)

Mà \(x_1=3x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=m-1\\3x^2_2=m^2-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m-1}{4}\\x_2=\pm\dfrac{\sqrt{m^2-3}}{\sqrt{3}}\end{matrix}\right.\)

Bình luận (1)
HH
Xem chi tiết
PP
Xem chi tiết
MH
14 tháng 4 2022 lúc 14:58

a) Khi \(m=1\) ta có phương trình \(x^2-3x+1=0\)

\(\Delta=3^2-4=5\)

Phương trình có 2 nghiệm phân biệt \(x_1=\dfrac{3-\sqrt{5}}{2};x_2=\dfrac{3+\sqrt{5}}{2}\)

b) Xét phương trình \(x^2-3x+m=0\left(1\right)\)

\(\Delta=9-4m\)

PT có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

Để \(x_1^2+x_2^2=2021\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2021\)

\(\Leftrightarrow3^2-2m=2021\Leftrightarrow2m=-2012\Leftrightarrow m=-1006\) (TM)

Bình luận (0)
NH
Xem chi tiết
NT
13 tháng 5 2023 lúc 22:40

Thay x=3 vào pt, ta được:

9-3(m-2)-m=13

=>9-m-3m+6=13

=>-4m+15=13

=>-4m=-2

=>m=1/2

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 1 2022 lúc 23:03

a: Thay m=2 vào pt, ta được:

\(x^2-2x+2=0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)

=>4m>12

hay m>3

Bình luận (1)
HN
Xem chi tiết
AH
31 tháng 1 2023 lúc 23:58

Lời giải:

Ta có:
$\Delta=(2m+1)^2-4(m^2+m-1)=5>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có nghiệm với mọi $m\in\mathbb{R}$

Bình luận (0)
NT
Xem chi tiết
ND
25 tháng 7 2023 lúc 15:20

a) Điều kiện để phương trình có hai nghiệm trái dấu là :

\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Rightarrow0< m< 3\)

b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy  > 0

\(\Rightarrow m< 4\)

Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\) 

\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)

Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)

\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)

\(\Leftrightarrow m=1\left(tm\right)\)

Vậy...........

 

 

 

Bình luận (0)
NT
25 tháng 7 2023 lúc 15:25

a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)

Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)

b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)

\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)

\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)

\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)

\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)

\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)

\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)

\(\Leftrightarrow2m^2+4m-10=0\)

\(\Leftrightarrow m^2+2m-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)

 

Bình luận (0)
TT
Xem chi tiết
TT
14 tháng 3 2022 lúc 19:57

undefinedundefined

Bình luận (0)
NH
Xem chi tiết
NT
22 tháng 12 2021 lúc 10:57

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

Bình luận (0)