PP

cho phương trình \(x^2-3x+m=0\) (1) với m là tham số

a) giải phương trình khi m=1

b)tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt \(x_1^2\) +\(x_2^2\)=2021

MH
14 tháng 4 2022 lúc 14:58

a) Khi \(m=1\) ta có phương trình \(x^2-3x+1=0\)

\(\Delta=3^2-4=5\)

Phương trình có 2 nghiệm phân biệt \(x_1=\dfrac{3-\sqrt{5}}{2};x_2=\dfrac{3+\sqrt{5}}{2}\)

b) Xét phương trình \(x^2-3x+m=0\left(1\right)\)

\(\Delta=9-4m\)

PT có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

Để \(x_1^2+x_2^2=2021\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2021\)

\(\Leftrightarrow3^2-2m=2021\Leftrightarrow2m=-2012\Leftrightarrow m=-1006\) (TM)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HL
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
NQ
Xem chi tiết
NA
Xem chi tiết