Tìm x:
a) x.(x+7)=0
b)(x+12).(x-3)=0
Tìm x:
a)(x+3)2-4x-12=0
b)x(x+5)(x-5)-(x-3)(x2+3x+9)=7
a) (x + 3)^2 - 4x - 12 = 0
<=> (x + 3)^2 - 4(x + 3) = 0
<=> (x + 3)(x - 1) = 0
<=> x = -3 hoặc x = 1
b) x(x + 5)(x- 5) - (x - 3)(x^2 + 3x + 9) = 7
<=> x^3 - 25x - x^3 + 27 = 7
<=> -25x + 27 = 7
<=> x = 4/5
a/ \(\left(x+3\right)^2-4x-12=0\)
\(\left(x+3\right)^2-4\left(x+3\right)=0\)
\(\left(x+3\right)\left(x+3-4\right)=0\)
\(\left[{}\begin{matrix}x+3=0\Rightarrow x=-3\\x+3-4=0\Rightarrow x=1\end{matrix}\right.\)
---
b/ \(x\left(x+5\right)\left(x-5\right)-\left(x-3\right)\left(x^2+3x+9\right)=7\)
\(x\left(x^2-25\right)-\left(x^3-27\right)=7\)
\(x^3-25x-x^3+27=7\)
\(-25x=-20\)
\(x=\dfrac{20}{25}=\dfrac{4}{5}\)
a, <=>x2 +6x+9-4x-12=0
<=> x2 +2x -3=0
<=> x2 +3x -x-3=0
<=> x.(x+3) - (x+3) =0
<=> (x-1)(x+3)=0
<=> x=1 hoặc x=-3
b, <=> x(x2 -25) - (x-3)(x+3)2 -7=0
<=> x3 -25x + (9-x2) (x+3) -7=0
<=> x3 -25x+ 9x+27-x3 -3x2 -7=0
<=> -3x2 -16x +20=0
<=>(3x-10)(x-2) =0 (đoạn này tự phân tích nha ^ ^)
<=> x= 10/3 hoặc x=2
Chúc bạn học tốt nha!
Tìm x:
a)x.(x+7)-(x-2).(x+3)=0
b)(x+2)2-(x2-4)=0
a: \(x\left(x+7\right)-\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2+7x-x^2-x+6=0\)
hay x=-1
b: Ta có: \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
b. (x + 2)2 - x2 + 4 = 0
<=> (x + 2 - x)(x + 2 + x) + 4 = 0
<=> 2(2 + 2x) + 4 = 0
<=> 4(1 + x) + 4 = 0
<=> 4(1 + x) = -4
<=> 1 + x = -1
<=> x = -1 - 1
<=> x = -2
\(a,\) \(x\left(x+7\right)-\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow x^2+7x-x^2-3x+2x+6\\ \Leftrightarrow6x=0\\ \Leftrightarrow x=0\)
\(Vậy...\)
\(b,\) \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4=0\\ \Leftrightarrow4x+8=0\\ \Leftrightarrow x=-2\)
Tìm x:
a, x^2-2x+2|x-1|-7=0
b, (x^2+3x+2)(x^2+7x+12)=24
gấp ạ!!!!!!!
a. \(x^2-2x+2\left|x-1\right|-7=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2x+2\left(x-1\right)-7=0\\x^2-2x-2\left(x-1\right)-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\\x^2-4x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\\left(x-5\right)\left(x+1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm3\\x=5\\x=-1\end{matrix}\right.\)
b: Ta có: \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\cdot\left(x^2+5x\right)=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Tìm x:
a. 4x2 - 20x + 25 = 0
b. (x - 5)(x + 5) - (x - 3)2 = 2(x - 7)
a. `4x^2-20x+25=0`
`<=>(2x)^2-2.2x.5 +5^2=0`
`<=>(2x-5)^2=0`
`<=>2x-5=0`
`<=>x=5/2`
b. `(x-5)(x+5)-(x-3)^2=2(x-7)`
`<=>x^2-25-x^2+6x-9=2x-14`
`<=>6x-34=2x-14`
`<=>4x=20`
`<=>x=5`
\(a,4x^2-20x+25=0\Leftrightarrow\left(2x\right)^2-2.2x.5+5^2=0\)
\(\Leftrightarrow\left(2x-5\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)
b, \(\left(x-5\right)\left(x+5\right)-\left(x-3\right)^2=2\left(x-7\right)\)
\(\Leftrightarrow x^2-25-x^2+6x-9=2x-14\Leftrightarrow4x=20\Leftrightarrow x=5\)
a) Có: (2x)2 - 2.2.5.x + 52 = 0
⇒ (2x - 5)2 = 0 ⇒ 2x - 5 = 0
⇒ 2x = 5 ⇒ x = \(\dfrac{5}{2}\)
b) Có: x2 - 25 - x2 + 6x - 9 = 2x - 14
⇒ 6x - 36 = 2x - 14
⇒ 4x = 22
⇒ x = \(\dfrac{11}{2}\)
Tìm x:
a)(3x+5).(7-2x)+6x.(x+4)=0
b)x3-25x=0
a) \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow35x=-35\Leftrightarrow x=-1\)
b) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a: Ta có: \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow x=1\)
b: Ta có: \(x^3-25x=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a. (3x + 5)(7 - 2x) + 6x(x + 4) = 0
<=> 21x - 6x2 + 35 - 10x + 6x2 + 24x = 0
<=> -6x2 + 6x2 + 21x - 10x + 24x = -35
<=> 35x = -35
<=> x = \(\dfrac{-35}{35}=-1\)
b. x3 - 25x = 0
<=> x(x2 - 52)
<=> x(x + 5)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
Tìm x:
a) (x-3)(x2+3x+9)-x(x2-3)=0
b) 8x4+x=0
d) x3-6x2+8x=0
a: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x^2-3\right)=0\)
\(\Leftrightarrow x^3-27-x^3+3x=0\)
\(\Leftrightarrow x=9\)
b: Ta có: \(8x^4+x=0\)
\(\Leftrightarrow x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)\left(4x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Tìm x:
a) (x-19).(x+21)=0
b)(53-x).(41+x)=0
\(a.\)
\(\left(x-19\right)\left(x+21\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-19=0\\x+21=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=-21\end{matrix}\right.\)
\(S=\left\{19,-21\right\}\)
\(b.\)
\(\left(53-x\right)\left(41+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}53-x=0\\41+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=53\\x=-41\end{matrix}\right.\)
\(S=\left\{53,-41\right\}\)
Tìm x:
a) (x-19).(x+21)=0
<=>\(\left\{{}\begin{matrix}x-19=0< =>x=19\\x+21=0< =>x=-21\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là: S={19;-21}
b)(53-x).(41+x)=0
<=>\(\left\{{}\begin{matrix}53-x=0< =>x=53\\41+x=0< =>x=-41\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={53;-41}
a) x là 19 hoặc -21
b) x là 53 hoặc-41
cho tớ tim nhá
Tìm x:
a)x^3+1=0
b)6x^2-12x-48=0
a: Ta có: \(x^3+1=0\)
\(\Leftrightarrow x^3=-1\)
hay x=-1
b: Ta có: \(6x^2-12x-48=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Tìm x:
a) x(x-2)-x+2=0
b) (3-2x)2-(x-1)2=0
c) 81x4-x2=0
d) x3+x2+27x+27=0
Tìm x:
a) x(x-2)-x+2=0
b) (3-2x)2-(x-1)2=0
c) 81x4-x2=0
d) x3+x2+27x+27=0
a) \(x\left(x-2\right)-x+2=0\)
\(x\left(x-2\right)-\left(x-2\right)=0\)
\(\left(x-1\right)\left(x-2\right)=0\)
TH1:x-1=0⇒x=1
TH2:x-2=0⇒x=2
a) x(x−2)−x+2=0
x(x−2)−(x−2) =0
(x−1)(x−2) =0
TH1:x-1=0⇒x=1
TH2:x-2=0⇒x=2
b) \(\left(3-2x\right)^2-\left(x-1\right)^2=0\)
\(\left(3-2x-x+1\right)\left(3-2x+x-1\right)=0\)
\(\left(3-3x+1\right)\left(3-x-1\right)=0\)
TH1:3-3x+1=0⇒x\(=\dfrac{4}{3}\)
TH2:3-x-1=0⇒x=2