Những câu hỏi liên quan
KF
Xem chi tiết
KF
29 tháng 9 2019 lúc 16:58

help meeee

Bình luận (0)
DH
Xem chi tiết
LV
Xem chi tiết
NT
28 tháng 8 2021 lúc 13:22

a: Xét ΔACD và ΔBDC có

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: OC+OA=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Bình luận (0)
NP
Xem chi tiết

a) Xét ∆ACD và ∆BDC ta có :

DC chung

BC = AD (ABCD là hình thang cân )

ADC = BCD ( ABCD là hình thang cân)

=> ∆ACD = ∆BDC (c.g.c)

=> BDC = ACD (tg ứng) 

=> ∆DOC cân tại O

=> OC = OD

Mà AB//DC 

ABO = ODC ( so le trong) 

BAO = OCN (so le trong) 

Mà BDC = ACD (cmt)

=> OAB = ABO 

=> ∆AOB cân tại O 

=> OA = OB 

b) Xét ∆OND và ∆ONC ta có 

OC = OD (cmt)

ODC = ONC (cmt)

ON chung 

=> ∆OND = ∆ONC (c.g.c) 

=> DN = NC(1)

Mà OND + ONC = 180 độ( kề bù) 

Mà OND = ONC = 180/2 = 90 độ

=> ON vuông góc với AC(2)

Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)

Chứng minh tương tự ta có :

∆OMA = ∆OMB 

=> AM = MB(4)

=> OMB + OMA = 180 độ(kề bù )

=> OMB = OMA = 180/2 = 90 độ

=> OM vuông góc với AB(5)

Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)

Từ (3) và (5) => M , O , N thẳng hàng

Bình luận (0)
TM
Xem chi tiết
CT
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 2 2019 lúc 3:46

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ ADC và  ∆ BCD, ta có:

AD = BC (tính chất hình thang cân)

∠ (ADC) =  ∠ (BCD) (gt)

DC chung

Do đó:  ∆ ADC =  ∆ BCD (c.g.c) ⇒ ∠ C 1 =  ∠ D 1

Trong  ∆ OCD ta có:  ∠ C 1 =  ∠ D 1  ⇒  ∆ OCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

Bình luận (0)
SH
Xem chi tiết
MY
19 tháng 6 2021 lúc 19:10

mik làm tắt thôi có gì bạn trình bày lại 

a,trong hình thang ABCD cân thì 2 đường chéo AC=BD

và 2 cạnh bên bằng nhau AD=BC

mà DC chung=>\(\Delta ADC=\Delta BDC\left(c.c.c\right)\)

=>\(\angle\left(D1\right)=\angle\left(C1\right)\)\(=>\Delta ODC\) cân tại O=>OD=OC

mà \(AB//CD=>\left\{{}\begin{matrix}\angle\left(ABO\right)=\angle\left(D1\right)\\\angle\left(BAO\right)=\angle\left(C1\right)\end{matrix}\right.\)(so le trong)

\(=>\angle\left(ABO\right)=\angle\left(BAO\right)\)\(=>\Delta OAB\) cân tại O=>OA=OB

b, do \(\Delta OAB\) cân tại O có OM là trung tuyến nên cũng là đường cao

tương tự thì ON cũng là đường cao

\(=>\left\{{}\begin{matrix}OM\perp AB\\ON\perp CD\end{matrix}\right.\) mà \(AB//CD=>M;N;O\) thẳng hàng

Bình luận (0)
CM
Xem chi tiết