Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 1 2019 lúc 9:26

Chọn D

Tương tự như trên, áp dụng bất đẳng thức Cauchy ta có

Do đó . Vì vậy, mệnh đề D sai.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 11 2017 lúc 17:47

Ta có

sin 5 x ≤ sin 4 x ⇒ y ≤ sin 4 x + 3 cos x

Áp dụng bất đẳng thức Cauchy ta có:

1 - cos x 1 + cos x 1 + cos x = 1 2 2 - 2 cos x 1 + cos x 1 + cos x

≤ 1 2 2 - 2 cos x + ( 1 + cos x ) 2 3 3 = 32 27 < 3

⇒ 3 - 1 - cos x 1 + cos x 2 > 0 ⇒ 1 - cos x 3 - 1 - cos x 1 + cos x 2 ≥ 0 ⇒ 3 1 - cos x - sin 4 x ≥ 0 ⇔ sin 4 x + 3 cos x ≤ 3

M = maxy = 3 ⇔ cos(x) = 1

⇔ x = k 2 π ,   k ∈ ℤ

Ta lại có

y ≥ - sin 4 x + 3 cos x

Tương tự như trên, áp dụng bất đẳng thức Cauchy ta có:

1 + cos x 1 - cos x 1 - cos x = 1 2 2 + 2 cos x 1 - cos x 2 ≥ 32 27 ≤ 3 ⇒ 3 - 1 + cos x 1 - cos x 2 > 0 ⇒ 1 + cos x 3 - 1 + cos x 1 - cos x 2 ⇔ sin 4 x + 3 cos x ≥ - 3 m = m i n y = - 3 ⇔ cos x = - 1 ⇔ x = k 2 π , k ∈ ℤ

Do đó M m = - 1 . Vì vậy, mệnh đề D sai.

Đáp án cần chọn là D

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 11 2017 lúc 9:22

Ta có 

y = sin x = cos 2 x = sin x - 1 - 2 sin 2 x = 2 sin 2 x + sin x - 1

Đặt t = sin(x), - 1 ≤ t ≤ 1

Ta sẽ đi tìm GTLN và GTNN của hàm số y = g t = 2 t 2 + t - 1  trên đoạn [ -1;1 ]

Ta có  g t = - 2 t 3 - t + 1 ,   - 1 ≤ t ≤ 1 2 2 t 3 + t - 1 ,     1 2 ≤ t ≤ 1

* Xét hàm số  h t = - 2 t 3 - t + 1  trên đoạn - 1 ; 1 2

Dễ dàng tìm được 

M a x r ∈ 1 2 ; 1 h t = 9 8 ⇔ t = - 1 4 M i n r ∈ 1 2 ; 1 h t = 0 ⇔ t = 1 2

* Xét hàm số k t = 2 t 3 + t - 1  trên đoạn  1 2 ; 1

Cũng dễ dàng tìm được 

M a x r ∈ 1 2 ; 1 k t = 2 ⇔ t = 1 M i n r ∈ 1 2 ; 1 k t = 0 ⇔ t = 1 2

Qua hai trường hợp trên ta đi đến kết luận

M a x r ∈ - 1 ; 3 g t = 2 ⇔ t = 1 M i n r ∈ - 1 ; 3 g t = 0 ⇔ t = 1 2

Hay 

M = M a x y = 2 ⇔ sin x = - 1 ⇔ x = - π 2 + k 2 π m = Miny = 0 ⇔ sin x = 1 2 ⇔ x = π 6 + k 2 π x = 5 π 6 + k 2 π

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 11 2019 lúc 2:56

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 9 2017 lúc 9:17

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 3 2019 lúc 17:51

Đáp án B

Dựa vào bảng biến thiên ta thấy:

+) lim x → − ∞ y = − 1 ⇒  đồ thị hàm số có TCN   y = − 1

+) lim x → 1 − y = − ∞ ⇒  đồ thị hàm số có TCĐ   x = 1

+) Hàm số không có giá trị lớn nhất vì   lim x → + ∞ y = + ∞

+) Hàm số không có giá trị nhỏ nhất vì   lim x → 1 − y = − ∞

Suy ra không có mệnh đề nào đúng

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 8 2017 lúc 10:16

Đáp án D

Hàm số  y = f ( x )  đạt cực tiểu tại x 0 = 0  

Hàm số  y = f ( x )  có ba điểm cực trị.

Phương trình  f ( x ) = 0  có 4 nghiệm phân biệt

Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 6 2019 lúc 7:59

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 4 2018 lúc 11:16

Chọn đáp án B

Phương pháp

Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.

Cách giải

Dựa vào đồ thị hàm số ta thấy hàm số đã cho

+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).

+) Hàm số có 3 điểm cực trị.

+) Hàm số không có GTLN.

Do đó các mệnh đề (I), (III) đúng.

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 2 2018 lúc 18:30

Chọn C.

Ta có y' =  ( 1 + x ) x + 2 2 x - 3 3 ( 1 - x 2 )  nên y' = 0

Bảng xét dấu

Ta thấy đạo hàm đổi dấu 2 lần nên hàm số có hai điểm cực trị suy ra đồ thị hàm số có 2 điểm cực trị.

Trắc nghiệm: Ta thấy phương trình y' =  0 có 2 nghiệm đơn hoặc bội lẻ nên đồ thị hàm số có hai điểm cực trị.

Bình luận (0)