Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 3 2019 lúc 11:19

Chọn D

Bình luận (0)
TA
Xem chi tiết
HP
24 tháng 9 2021 lúc 19:32

\(sin\left(\dfrac{\pi}{3}+x\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{3}{2}+sin\left(\dfrac{\pi}{3}+x\right)\in\left[\dfrac{1}{2};\dfrac{5}{2}\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{1}{2}\\y_{max}=\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
NV
Xem chi tiết
NT
28 tháng 10 2023 lúc 12:47

\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)

\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)

\(f'\left(x\right)=0\)

=>\(cosx\left(sinx+2\right)=0\)

=>\(cosx=0\)

=>\(x=\dfrac{\Omega}{2}+k\Omega\)

mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)

nên \(x=\dfrac{\Omega}{2}\)

\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)

=1+4-5=0

\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)

=>Chọn D

Bình luận (1)
PB
Xem chi tiết
CT
6 tháng 4 2019 lúc 15:36

Chọn B

Đặt 

Bài toán quy về tìm giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0].

Từ bảng biến thiên ta có giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0] là 3.

Vậy giá trị lớn nhất của hàm số f(sin x -1) bằng 3.

Bình luận (0)
EE
Xem chi tiết
NL
20 tháng 9 2021 lúc 20:25

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))

Bình luận (0)
H24
Xem chi tiết
NC
1 tháng 9 2021 lúc 11:33

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

Bình luận (0)