Những câu hỏi liên quan
DM
Xem chi tiết
NT
3 tháng 9 2021 lúc 15:23

a) \(f\left(0\right)=\dfrac{2}{7}.0-8=-8\)

\(f\left(2\right)=\dfrac{3}{7}.2-8=-\dfrac{50}{7}\)

\(f\left(-1\right)=\dfrac{3}{7}.\left(-1\right)-8=-\dfrac{59}{7}\)

\(f\left(-2\right)=\dfrac{3}{7}.\left(-2\right)-8=-\dfrac{62}{7}\)

b) Với mọi \(x_1,x_2\in R\), ta có

\(x_1>x_2\Leftrightarrow\dfrac{3}{7}x_1>\dfrac{3}{7}x_2\Leftrightarrow\dfrac{3}{7}x_1-8>\dfrac{3}{7}x_2-8\Leftrightarrow f\left(x_1\right)>f\left(x_2\right)\)

\(\Rightarrow\) Hàm số luôn đồng biến trên R

Bình luận (0)
NT
3 tháng 9 2021 lúc 15:24

b: Vì \(a=\dfrac{3}{7}>0\) nên hàm số đồng biến trên R

Bình luận (0)
HM
Xem chi tiết
TL
19 tháng 7 2021 lúc 20:22

`a=m^2+m+1=m^2+2.m. 1/2 + (1/2)^2 + 3/4= (m+1/2)^2 + 3/4 >0 forall m`

`=> a>0 =>` Hàm số luôn đồng biến trên `RR`.

Bình luận (2)
NT
19 tháng 7 2021 lúc 20:22

Để hàm số trên đồng biến khi \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy hàm số luôn đồng biến trên R 

Bình luận (1)
NT
19 tháng 7 2021 lúc 20:24

Ta có: \(m^2+m+1\)

\(=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\)

Do đó: Hàm số \(f\left(x\right)=\left(m^2+m+1\right)x+5\) luôn đồng biến trên R

Bình luận (1)
HT
Xem chi tiết
H24
1 tháng 10 2019 lúc 18:29

Gia su \(x_1< x_2\)

\(\Rightarrow x_1-x_2< 0\left(1\right)\)

Ta co:

\(f\left(x_1\right)-f\left(x_2\right)=\left(3m^2-7m+5\right)x_1-2011-\left(3m^2-7m+5\right)x_2+2011=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)Vi la chung minh dong bien nen xet

\(3m^2-7m+5>0\)

Dat \(g\left(m\right)=3m^2-7m+5\)

Ta lai co:

\(\Delta=\left(-7\right)^2-4.3.5=-11< 0\)

Theo dinh li dau tam thuc bac hai thi \(g\left(m\right)\)cung dau voi he so 3

\(\Rightarrow3m^2-7m+5>0\left(2\right)\left(\forall m\right)\)

Tu \(\left(1\right)\)va \(\left(2\right)\)suy ra;

\(\left(x_1-x_2\right)\left(3m^2-7m+5\right)< 0\)

Ma \(f\left(x_1\right)-f\left(x_2\right)=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vay ham so \(y=f\left(x\right)=\left(3m^2-7m+5\right)x-2011\)dong bien voi moi m

Bình luận (0)
HT
5 tháng 10 2019 lúc 9:17

@MaiLink thanh you bạn nha =)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 6 2019 lúc 8:17

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 12 2017 lúc 2:16

Cho x các giá trị bất kì x 1 ,   x 2 sao cho  x 1   <   x 2

= >   x 1   -   x 2   <   0

Ta có:

f x 1 = 3 x 1 ; f x 2 = 3 x 2 ⇒ f x 1 − f x 2 = 3 x 1 − 3 x 2 = 3 x 1 − x 2 < 0 ⇒ f x 1 < f x 2

Vậy với   x 1   <   x 2 ta được f ( x 1 )   <   f ( x 2 )  nên hàm số y = 3x đồng biến trên tập hợp số thực R.

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 8 2019 lúc 12:59

Cho x các giá trị bất kì x1, x2 sao cho x1 < x2

=> x1 - x2 < 0

Ta có: f(x1) = 3x1 ; f( x2) = 3x2

=> f(x1) - f(x2) = 3x1 - 3x2 = 3(x1 - x2) < 0

=> f(x1) < f(x2)

Vậy với x1 < x2 ta được f(x1) < f(x2) nên hàm số y = 3x đồng biến trên tập hợp số thực R.

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 12 2018 lúc 7:10

 Do x 1 < x 2  nên x 1 − x 2 < 0

Ta có:

f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2

Vậy hàm số y = 3x + 1 đồng biến trên R

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 11 2018 lúc 10:06

Do x1 < x2 nên x1 - x2 < 0

Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0

⇔ f(x1 ) < f(x2 )

Vậy hàm số y = 3x + 1 đồng biến trên R

Bình luận (0)
DM
Xem chi tiết
NT
3 tháng 9 2021 lúc 15:31

b: Vì \(a=-\dfrac{5}{9}< 0\) nên hàm số luôn nghịch biến trên R

Bình luận (0)