Bài 1:Với a =-2,biết
a)M=a+a
b)N=a-a
c)P=axa
Giúp mình với ạ, mình cần gấp!!!
Bài 1. Giải tam giác ABC vuông tại A, biết
a) AB = 2,7 và AC = 4,5
b) AC = 4,0 và BC = 4,8
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\dfrac{9\sqrt{34}}{10}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{5\sqrt{34}}{34}\)
\(\Leftrightarrow\widehat{B}\simeq59^0\)
\(\Leftrightarrow\widehat{C}=21^0\)
trên tia Ax lâý 2 điểm B và C tính khoảng cách AC biết
a) AB=7cm BC=2cm
b) AB=a(cm) BC=b(cm) . (0<a<b)
giúp mình với
a. Vì 2 điểm B và C thuộc tia Ax(gt)
Suy ra: AC= AB + BC
Thay số: AC = 7+2=9
Vậy AC =9 cm
b. Làm tương tự chỉ cần thay AB=a BC=b thôi
Bài 6: Cho hàm số y=f(x)=ax
a) Xác định a biết đths đi qua điểm A (2; 5)
b) Các điểm M(1; 3), N(4; 10) có thuộc đths không?
a, đths đi qua A(2;5) <=> 5 = 2a <=> a = 5/2
b, đề bạn có thiếu ko ?
Giúp mik với mn ơi mai mik nộp r ạ
Bài 1 Viết Pt đường thẳng▲biết
a.▲ đi qua 2 điểm A(2;1) và B(5;3)
b.▲ đi qua M(3;-2) và VTCP u (4;1)
c.▲ đi qua N (2;-1) và VTPT n =(5;3)
Bài 2 Viết phương trình đường thẳng dbiết
a.d đi qua A(-3;2) và VTCP u =(4;1)
b.d đi qua B(-5;2) và VTPT n = (3;2)
c.d đi qua 2 điểm (1;0)và D(5;3)
Bài 2:
a: VTPT là (-1;4)
PTTQ là:
-1(x+3)+4(y-2)=0
=>-x-3+4y-8=0
=>-x+4y-11=0
=>x-4y+11=0
b: Phương trình tổng quát là:
3(x+5)+2(y-2)=0
=>3x+15+2y-4=0
=>3x+2y+11=0
c: vecto CD=(4;3)
=>VTPT là (-3;4)
PTTQ là:
-3(x-5)+4(y-3)=0
=>-3x+15+4y-12=0
=>-3x+4y+3=0
Bài 1 cho tứ giác ABCD, P,Q lần lượt là trung điểm của AD và BC,a chứng minh PQ hoặc AB AC 2,b tứ giác ABCD là hình thang PQ AB CD 2. Bài 2 cho hình thang ABCD, AB đáy lớn. M ,N,P,Q lần lượt là trung điểm của AD BC AC BD.a chứng Minh M N P Q thẳng hàng.b Cho AB a CD b với a b. Tính MN PQ.c Cm rằng nếu MP PQ QN thì a 2b
bài 1
cho góc a(0<a<90)hãy tính sin a ,tan a nếu
a)cos a=12/13
b)cos a=3/5
bài 2
cho tam giác abc vuông tại a,đường cao ah,tính tỉ số lượng giác của góc C,từ đó suy ra tỉ số lượng giác của góc B,biết
a,AB=16cm,AC=12cm
b,Ac=13cm,CH=5cm
c,CH=3cm,BH=4cm
a) Ta có: \(cos\alpha=\dfrac{12}{13}\)
Mà: \(sin^2\alpha+cos^2a=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow sin\alpha=\dfrac{5}{13}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)
b) Ta có: \(cos\alpha=\dfrac{3}{5}\)
Mà: \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)
2:
a: BC=căn 16^2+12^2=20cm
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=3/5
cos B=sin C=AB/BC=4/5
tan B=cot C=3/5:4/5=3/4
cot B=tan C=1:3/4=4/3
b: AH=căn 13^2-5^2=12cm
Xét ΔAHC vuông tại H có
sin C=AH/AC=12/13
=>cos B=12/13
cos C=HC/AC=5/13
=>sin B=5/13
tan C=12/13:5/13=12/5
=>cot B=12/5
tan B=cot C=1:12/5=5/12
c: BC=3+4=7cm
AB=căn BH*BC=2*căn 7(cm)
AC=căn CH*BC=căn 21(cm)
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=căn 21/7
sin C=cos B=AB/BC=2/căn 7
tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21
cot B=tan C=1/căn 21/2=2/căn 21
Cho tứ giác ABCD, AC vuông góc với BD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. CMR: MP= NQ
Bài 8: Cho a, b thuộc R thỏa mãn: a+ b+ab=8. Tìm GTNN của B= a^2+b^2
Bài 9: Cho a, b thuộc R thỏa mãn: a+b+ab=35. Tìm GTNN của: C= a^2+b^2
Bài 10: Tìm n để: (n thuộc N)
a) n^2+5
b) n^2-n+1 là số chính phương
Bài 1:Tìm Ư của 126
Bài 2:Tìm ước chung của hai số n + 3 và 2n + 5 với n thuộc N
Bài 3: a)Cho A là một điểm nằm giữa điểm B và C. Biết BA=2cm, BC =7cm.Tính AC.
b)Cho ba điểm A,B.C.Biết AB=3,8cm,BC=2,7cm,AC=5cm. Hãy chứng tỏ rằng ba điểm A,B,C không thẳng hàng.
Bài 4:Tìm số tự nhiên n và m sao cho 1+2+3+...+n=mmm
Bài 1 cho tứ giác ABCD, P,Q lần lượt là trung điểm của AD và BC,
a) chứng minh PQ< hoặc = AB+AC/2,
b) tứ giác ABCD là hình thang <=> PQ=AB+CD/2.
Bài 2: cho hình thang ABCD, AB đáy lớn. M ,N,P,Q lần lượt là trung điểm của AD BC AC BD.
a) chứng Minh M N P Q thẳng hàng.
b) Cho AB=a CD=b với a>b. Tính MN PQ.
c) Cm rằng nếu MP=PQ=QN thì a=2b