(x-2)^2=(5-3x)^2
Rút gọn các biểu thức sau:
a,(3x+1)^2-2(3x+1)(3x-5)+(3x-5)^2
b,(3x^2-y)^2
c,(3x+5)^2+(3x-5)^2-(3x+2)(3x-2)
d,2x(2x-1)^2-3x(x+3)(Õ-3)-4x(x+1)^2
e,(x-2)(x^2+2x+4)-(x+1)^2+3(x-1)(x+1)
f,(x^4-5x^2+25)(x^2+5)-(2+x^2)^2+3(1+x^2)^2
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
Bài1:Rút gọn
a,(4x-5)(3x+2)-(7-3x)(x+2)
b,(-2x+1)(x-5)-3(x-2)(x+1)
c,(x^2-7)(x-5)+(3x^2+5)(2x-4)
d,(x^2+3x-2)(x+4)-4x(x-5)
Bài2:Tìm xbiết
a,(x-4)(x+3)-(x+1)(x-5)=8
b,(3x-2)(x+1)-3x(x+7)=13
c,(x+5)(x-5)-x(x+2)=9
d,(x-1)(x^2+x+1)-x(x^2-3)=1
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
Tìm x :( bài 14 trang 11 sách bồi dưỡng năng lực tự học toán 8)
Câu 2 : (2x+3)2+(x-1)*(x+1)=5*(x+2)2-(x-5)*(x+1)+(x+4)2
Câu 3 : (-x+5)*(x-2)+(x-7)*(x+7)=(3x+1)2-(C)*(3x+2)
Câu 4 : (5x-1)*(x+1)-2(x-3)2=(x+2)*(3x-1)-(x+4)2+(x2-x)
Câu 5 : (4x-1)2-(3x+2)*(3x-2)=(7x-1)*(x+2)+(2x+1)2-(3x+2)
Câu 6 : (2x+3)2-(5x-4)*(5x+4)=(x+5)2-(3x-1)*(7x+2)-(x2-1+1)
Câu 7 : (1-3x)2-(x-2)*(9x+1)=(3x-4)*(3x+4)-9(x+3)2
Câu 8 : (3x+4)*(3x-4)-(2x+5)=(x-5)+(2x+1)2-(x2-2x)+(x-1)2
Câu 9 : (x-7)*(x+1)-(x-3)2=(3x-5)*(3x+5)-(3x+1)+(x-2)2-x2
Câu 10 : -5(x+3)2+(x-1)*(x+1)+(2x-3)=(5x-2)2-5x(5x+3)
Bài 1:
i)\(\dfrac{x+1}{x-5}\)+\(\dfrac{x-18}{x-5}\)-\(\dfrac{x+2}{5-x}\)
j)\(\dfrac{3x\left(x-2\right)}{3x-2}\)+\(\dfrac{6x^2}{3x-2}\)-\(\dfrac{2\left(2-3x\right)}{2-3x}\)
n)\(\dfrac{2}{x}\)+\(\dfrac{3}{x-1}\)+\(\dfrac{1-4x}{x^2-x}\)
Bài 2:
j)\(\dfrac{2}{3x}\)-\(\dfrac{1}{2x-2}\)-\(\dfrac{x-4}{6x-6x^2}\)
i: \(=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=3\)
Bài 1:
\(i,\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}-\dfrac{x+2}{5-x}=\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=\dfrac{3\left(x-5\right)}{x-5}=3\)
\(j,\dfrac{3x\left(x-2\right)}{3x-2}+\dfrac{6x^2}{3x-2}-\dfrac{2\left(2-3x\right)}{2-3x}=\dfrac{3x^2-6x}{3x-2}+\dfrac{6x^2}{3x-2}+\dfrac{4-6x}{3x-2}=\dfrac{3x^2-6x+6x^2+4-6x}{3x-2}=\dfrac{9x^2-12x+4}{3x-2}=\dfrac{\left(3x-2\right)^2}{3x-2}=3x-2\)
\(n,\dfrac{2}{x}+\dfrac{3}{x-1}+\dfrac{1-4x}{x^2-x}=\dfrac{2\left(x-1\right)+3x+1-4x}{x\left(x-1\right)}=\dfrac{2x-2+3x+1-4x}{x\left(x-1\right)}=\dfrac{x-1}{x\left(x-1\right)}=\dfrac{1}{x}\)
Bài 2:
\(j,\dfrac{2}{3x}-\dfrac{1}{2x-2}-\dfrac{x-4}{6x-6x^2}=\dfrac{4\left(x-1\right)}{6x\left(x-1\right)}-\dfrac{3x}{6x\left(x-1\right)}-\dfrac{x-4}{6x\left(1-x\right)}=\dfrac{4x-4-3x+x-4}{6x\left(x-1\right)}=\dfrac{2x-8}{6x\left(x-1\right)}=\dfrac{2\left(x-4\right)}{6x\left(x-1\right)}=\dfrac{x-4}{3x\left(x-1\right)}\)
a. 3[x^2 - 2x +1]+x[2-3x]=7
b. 5[x-2] +2[x+3]=10
c. [x+1][-3]+5[x-4]=-3
d. 2[x-1]-x[3-x]=x^2
đ. 3x[x+5]-2[x+5]=3x^2
e. 4x[x+2]+x[4-x]=3x^2 +12
f. 1/3x [3x+6]-x[x-5]=9
a) \(3\left(x^2-2x+1\right)+x\left(2-3x\right)=7\)
\(\Rightarrow3x^2-6x+3+2x-3x^2=7\)
\(\Rightarrow-4x+3=7\)
\(\Rightarrow-4x+3-7=0\)
\(\Rightarrow-4x-4=0\)
\(\Rightarrow-4\left(x+1\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
b) \(5\left(x-2\right)+2\left(x+3\right)=10\)
\(\Rightarrow5x-10+2x+6=10\)
\(\Rightarrow7x-4=10\)
\(\Rightarrow7x=10+4=14\)
\(\Rightarrow x=\dfrac{14}{7}=2\)
c) \(\left(x+1\right)\left(-3\right)+5\left(x-4\right)=-3\)
\(\Rightarrow-3x-3+5x-20=-3\)
\(\Rightarrow2x-23=-3\)
\(\Rightarrow2x=-3+23=20\)
\(\Rightarrow x=\dfrac{20}{2}=10\)
d) \(2\left(x-1\right)-x\left(3-x\right)=x^2\)
\(\Rightarrow2x-2-3x+x^2=x^2\)
\(\Rightarrow-x-2+x^2-x^2=0\)
\(\Rightarrow-x-2=0\)
\(\Rightarrow-x=2\)
\(\Rightarrow x=-2\)
đ) \(3x\left(x+5\right)-2\left(x+5\right)=3x^2\)
\(\Rightarrow3x^2+15x-2x-10=3x^2\)
\(\Rightarrow3x^2-3x^2+13x-10=0\)
\(\Rightarrow13x-10=0\)
\(\Rightarrow13x=10\)
\(\Rightarrow x=\dfrac{10}{13}\)
e) \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)
\(\Rightarrow4x^2+8x+4x-x^2=3x^2+12\)
\(\Rightarrow3x^2+12x=3x^2+12\)
\(\Rightarrow3x^2+12x-3x^2-12=0\)
\(\Rightarrow12\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
f) \(\dfrac{1}{3}x\left(3x+6\right)-x\left(x-5\right)=9\)
\(\Rightarrow x^2+2x-x^2+5x=9\)
\(\Rightarrow7x=9\)
\(\Rightarrow x=\dfrac{9}{7}\)
\(1, (-x+5)(x-2)+(x-7)(x+7)=(3x+1)^2-(3x-2)(3x+2)\)
\(2, (5x-1)(x+1)-2(x-3)^2=(x+2)(3x-1)-(x+4)^2+(x^2-x)\)
3, \((x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2 +(x-2)^2-x^2\)
1: \(A=\left(-x+5\right)\left(x-2\right)+\left(x-7\right)\left(x+7\right)\)
\(=-x^2+2x+5x-10+x^2-49=7x-59\)
\(B=\left(3x+1\right)^2-\left(3x-2\right)\left(3x+2\right)\)
\(=9x^2+6x+1-9x^2+4=6x+5\)
=>7x-59=6x+5
=>x=64
2: \(A=\left(5x-1\right)\left(x+1\right)-2\left(x-3\right)^2\)
\(=5x^2+5x-x-1-2x^2+12x-9\)
\(=3x^2+16x-10\)
\(B=\left(x+2\right)\left(3x-1\right)-\left(x+4\right)^2+x^2-x\)
\(=3x^2-x+6x-2-x^2-8x-16+x^2-x\)
\(=3x^2-4x-18\)
=>16x-10=-4x-18
=>20x=-8
hay x=-2/5
chứng minh biểu thức không phụ thuộc vào x (x^2+3x+5)^2+2(x^2+3x+5)(1+3x-x^2)+(1-x^2+3x)^2
Ta có: \(\left(x^2+3x+5\right)^2+2\left(x^2+3x+5\right)\left(1-3x-x^2\right)+\left(1-3x-x^2\right)^2\)
\(=\left(x^2+3x+5+1-3x-x^2\right)^2\)
\(=6^2=36\)
Giúp mình với ạ
1) lim\(\dfrac{3x^2+5}{x^3-x+2}\)(x-->+∞)
2) lim\(\dfrac{2x^2\left(3x^2-5\right)^3\left(1-x\right)^5}{3x^{14}+x^2-1}\)(x-->-∞)
3) lim\(\dfrac{3x-\sqrt{2x^2+5}}{x^2-4}\)(x-->+∞)
1 ) \(lim_{x\rightarrow+\infty}\dfrac{3x^2+5}{x^3-x+2}=lim_{x\rightarrow+\infty}\dfrac{\dfrac{3}{x}+\dfrac{5}{x^3}}{1-\dfrac{1}{x^2}+\dfrac{2}{x^3}}=0\)
2 ) \(lim_{x\rightarrow-\infty}\dfrac{2x^2\left(3x^2-5\right)^3\left(1-x\right)^5}{3x^{14}+x^2-1}\) \(=lim_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}\left(3-\dfrac{5}{x^2}\right)^3\left(\dfrac{1}{x}-1\right)^5}{3+\dfrac{1}{x^{12}}-\dfrac{1}{x^{14}}}=0\)
3 ) \(lim_{x\rightarrow+\infty}\dfrac{3x-\sqrt{2x^2+5}}{x^2-4}=lim_{x\rightarrow+\infty}\dfrac{\left(7x^2-5\right)}{\left(3x+\sqrt{2x^2+5}\right)\left(x^2-4\right)}\)
\(=lim_{x\rightarrow+\infty}\dfrac{\dfrac{7}{x}-\dfrac{5}{x^3}}{\left(3+\sqrt{2+\dfrac{5}{x^2}}\right)\left(1-\dfrac{4}{x^2}\right)}=0\)
Tìm x biết:
1. (x-2)^2-(x-3)(x+3)=6
2. 4(x-3)^2-(2x-1)(2x+1)=10
3. (x-4)^2-(x-2)(x+2)=6
4.9(x+1)^2-(3x-2)(3x+2)=10
5. 3x +2(5-x)=0
6.x(2x-1)(x+5)-(2x^2+1)(x+4,5)=3,5
7, 3x^2-3x(x-2)=36
8. (3x^2-x+1)(x-1) +x^2(4-3x)=5/2
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35