Những câu hỏi liên quan
TA
Xem chi tiết
AN
Xem chi tiết
KH

Đây là tam giác vuông tại A vì ta có AB² + AC² = BC² theo định lý Pythagorean 

Khoảng cách từ A đến BC chính là đường cao hạ từ góc vuông xuống cạnh huyền. Gọi đường cao là AH 

Theo công thức tính diện tích tam giác ta có 

AB*AC = AH*BC 

==> AH = AB*AC/BC 
==> AH = 4cm

Bình luận (0)
H24
4 tháng 2 2019 lúc 15:40

= 46 nhé bn k cho mik nhé

Bình luận (0)
NP
4 tháng 2 2019 lúc 16:03

ta có: AB2 + AC2 = 625

BC2 = 625

=> AB2 + AC2 = BC2 ( = 625)

=> tg ABC vuông tại A ( định lý py-ta-go đảo)

Gọi khoảng cách từ A đến BC là AH ( tức là AH vuông góc với BC tại H)

ta có: \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{15.20}{2}=150\)

mà \(S_{\Delta ABC}=\frac{AH.BC}{2}=\frac{AH.25}{2}=150\)

=> AH = 12

=> khoảng cách từ A đến BC = 12 cm

...

hình bn tự kẻ nha

Bình luận (0)
AN
Xem chi tiết
MK
4 tháng 2 2019 lúc 11:41

trang bao nhiêu?, tìm giải cho

Bình luận (0)
LL
4 tháng 2 2019 lúc 11:41

1 . 

Hình bạn tự vẽ nhé!

Ta có:

IM là đường trung bình của tam giác ADB

⇒⇒IM =1212DB và // DB (1)

NK là đường trung bình của tam giác CDB

⇒⇒NK=1212DB và // DB (2)

Từ 1 và 2 suy ra IM//NK và IM=NK

Tương tự có IN//MK và IN=MK

Theo bài ra ta có: BD=CE

mà NK=IM=1212BD và IN=MK=1212CE ⇒⇒NK=IM=IN=MK

hay IMKN là hình thoi ⇔⇔ IK vuông góc với MN

2 .  Bạn tự lm nha 

Bình luận (0)
NY
Xem chi tiết
H24
16 tháng 2 2022 lúc 22:46

a, Vì AB2+AC2=152+202=625 cm

         BC2=252=625 cm

=> AB2+AC2=BC2 => tg ABC vuông tại A

b, Ta có AB2+AC2=32 cm

              BC2=32 cm

=> AB2+AC2=BC=> tg ABC vuông tại A

Mà AB=AC=4cm

=> tg ABC vuông cân tại A

Bình luận (0)
NL
Xem chi tiết
H24
21 tháng 2 2020 lúc 19:43

A B C H D 1 2 15cm 20cm 25cm

Xét t/gABC ta thấy AD là đường p/g của BAC

=>DB/DC=AB/AC (t/c phân giác)

Mà AB=15 cm ;AC=20cm nên ta có:

DB/DC=15/20

=> ta có tỉ lệ thức sau: DB/DB+DC=15/15+20 (t/c tỉ lệ thức)

=>DB/BC=15/35=>DB=15/35.BC=15/35.25=75/7(cm).

b) Ta kẻ AH _|_ BC

=>SABD=1/2AH.BD

=>SACD=1/2AH.DC

=>SABD/SACD=1/2AH.BD/1/2AH.DC=BD/DC

Mà ta thấy DB/DC=15/20=3/4

=> t/s SABD và SACD=3/4.

P/S: Bài này mik làm rồi nên hình mũi tên chỉ điển hình AB=15cm AC..... thôi nhé :< Cậu đừng ghi vào cũng được

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
LL
29 tháng 8 2021 lúc 11:28

a) Xét tam giác ABC có:

BD là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{15}{20}=\dfrac{3}{4}\)(tính chất)

 \(\Rightarrow\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{BC}{7}=\dfrac{25}{7}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\left\{{}\begin{matrix}DB=\dfrac{25.3}{7}=\dfrac{75}{7}\left(cm\right)\\DC=\dfrac{25.4}{7}=\dfrac{100}{7}\left(cm\right)\end{matrix}\right.\)

b) Kẻ đường cao AH của tam giác ABC

\(\Rightarrow\dfrac{S_{ACD}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AH.DC}{\dfrac{1}{2}.AH.BC}=\dfrac{DC}{BC}=\dfrac{100}{7}:25=\dfrac{4}{7}\)

Bình luận (0)
NT
29 tháng 8 2021 lúc 12:51

a: Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{15}=\dfrac{CD}{20}\)

mà BD+CD=25cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{15}=\dfrac{CD}{20}=\dfrac{25}{35}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{75}{7}cm;CD=\dfrac{100}{7}cm\)

Bình luận (0)
DA
Xem chi tiết
NM
30 tháng 9 2021 lúc 15:37

\(a,AB^2+AC^2=15^2+20^2=625=25^2=BC^2\)

Vậy ABC là tam giác vuông tại A (pytago đảo)

\(b,\)Áp dụng HTL tam giác ABC vuông tại A, đường cao AH

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\CH=\dfrac{AC^2}{BC}=12\left(cm\right)\\AH=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Vì AM là phân giác nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow MB=\dfrac{3}{4}MC\)

Mà \(MB+MC=BC=25\Rightarrow\dfrac{7}{4}MC=25\)

\(\Rightarrow MC=\dfrac{100}{7}\left(cm\right);MB=\dfrac{75}{7}\left(cm\right)\)

Bình luận (0)
DC
Xem chi tiết
RS
25 tháng 10 2016 lúc 21:07

a) Ta có 252=152+202 hay BC2=AB2+AC2

=> ▲ABC vuông tại A

b) Xét ▲ABC vuông tại A có
SinB = \(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
TanC = \(\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\)
=> SinB + TanC = \(\frac{4}{5}+\frac{3}{4}=\frac{31}{20}\)

c) I là trung điểm AC => AI = 10cm.
=> BI2 = 102+152= 325 => BI = \(5\sqrt{13}\)
Xét ▲ABI có TanI = \(\frac{3}{2}\)=> góc BIA = 56'18'

=> BIC = 180 - 56'18' = 123 độ 41 phút.

 

Bình luận (1)
KT
Xem chi tiết
PT
7 tháng 7 2015 lúc 9:24

a) Ta có: AB2 + AC2 = 202 + 152 = 625

BC2 = 252 = 625

nên AB2 + AC2 = BC2

    Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo

b)    Áp dụng định lí Pitago trong tam giác vuông ACH được:

    HC2 + HA2 = AC2

CH2 = 152 - 122

CH2 = 81

=> CH=9 (cm)

     Áp dụng định lí Pitago trong tam giác vuông AHB được:

                 AH2 + BH2 = AB2

               122 + BH2 = 202

=> BH2 = 202 - 122 = 256

=> BH=16 cm 

Bình luận (0)
KN
7 tháng 7 2015 lúc 9:32

Hình bạn tự kẻ nhé . 

a)  Ta có AB2+AC2 = 202+152= 625

Lại có BC2 = 252 = 625

=> Tam giác ABC vuông ( Py ta go )

b) Ta có AH là đường cao 

=> Tam giác ABH và tam giác ACH vuông tại H

Áp dụng Py ta go vào tam giác vuông ACH ta được :

AC2=CH2+ AH2

=> 152 = CH2 + 122

=> CH2 =  152 - 122 = 81

=> CH = 9 ( cm)

=> BH = BC-CH = 25- 9 = 16  ( cm)

Bình luận (0)