Tổng các nghiệm của phương trình sin x + π 4 + sin x - π 4 = 0 thuộc khoảng (0;4π) là:
A. 2π
B. 6π
C. 9π
D. 10π
Phương trình sin ( 2 x - π 4 ) = sin ( x + 3 π 4 ) có tổng các nghiệm thuộc khoảng 0 , π bằng:
Tìm tất cả các nghiệm của phương trình sin x + sin 2x + sin3x = 0 thuộc ( 0 ; π )
A. 3
B. 4
C. 5
D. 6
Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Trong các khoảng sau, m thuộc khoảng nào để phương trình sin^2 x-(2m+1) sin x.cos x + 2m cos^2 x = 0 có nghiệm thuộc khoảng (π/4 ; π/3)?
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
Tìm tổng các nghiệm của phương trình: sin(5x + π 3 ) = cos(2x - π 3 ) trên [0; π]
A.
B.
C.
D.
Số nghiệm của phương trình sin ( x + π / 4 ) = 1 thuộc [0;3π] là:
A. 1
B. 0
C. 2
D. 3
Số nghiệm thuộc khoảng ( 0 ; π ) của phương trình. tan x + sin x + tan x - sin x = 3 tan x là
A. 0
B. 1
C. 2
D. 3
Tìm tất cả các giá trị của m để phương trình sin2x+m√2*sin(x+π/4)=0 có nghiệm.
Tìm số nghiệm của phương trình sin 2 x + sin x - 1 2 sin x - 1 sin 2 x = 2 c o t 2 x trong khoảng 0 ; π
A. 2
B. 3
C.4
D. 5
Tổng các nghiệm của phương trình sin x . cos x + sin x + cos x = 1 trên khoảng 0 , 2 π là
A . 2 π
B . 4 π
C . 3 π
D . π