Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 3 2019 lúc 8:14

Bình luận (0)
H24
Xem chi tiết
ND
Xem chi tiết
HL
Xem chi tiết
KM
Xem chi tiết
NL
7 tháng 11 2021 lúc 20:52

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 2 2018 lúc 2:09

Bình luận (0)
HL
Xem chi tiết
VN
4 tháng 10 2018 lúc 15:34

Đáp án B

+ Ta có

tan φ = a 1 sin φ 1 + a 2 sin φ 2 a 1 cos φ 1 + a 2 cos φ 2 ⇔ 1 3 = a 1 + 3 2 a 2 - 1 2 a 2 ⇒ a 1 = - 1 2 3 + 3 2 a 2

⇔ a 1 = - 2 3 a 2 .

-> Với a 1  và a 2  trái dấu nhau -> độ lệch pha của hai dao động  cos Δ φ = - cos 2 π 3 - π 2 = - 3 2 .

+ Áp dụng công thức tổng hợp dao động, ta có:

25 = a 1 2 + a 2 2 - 3 a 1 a 2  thay  a 1 = - 2 3 a 2 , ta thu được phương trình  a 2 2 3 = 25 ⇒ a 2 = ± 5 3 ⇒ a 1 a 2 = - 50 3 .

Bình luận (0)
HL
Xem chi tiết
VN
8 tháng 12 2018 lúc 18:19

Đáp án B

Độ lệch pha của hai dao động:

Bình luận (0)
DV
Xem chi tiết
NL
22 tháng 12 2020 lúc 7:36

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)

Bình luận (0)
LN
Xem chi tiết
TS
3 tháng 6 2016 lúc 16:07

Tổng hợp dao động điều hòa

Bình luận (0)