Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 6 2017 lúc 6:46

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 6 2019 lúc 12:54

Đáp án D.

y ' = 3 x 2 − 12 x + 9

Gọi M x 0 ; x 0 3 − 6 x 0 2 + 9 x 0 − 1  là một điểm bất kì thuộc (C)  . Tiếp tuyến tại M:

  y = 3 x 0 2 − 12 x 0 + 9 x − x 0 + x 0 3 − 6 x 0 2 + 9 x 0 − 1

⇔ y = 3 x 0 2 − 12 x 0 + 9 x − 2 x 0 3 + 6 x 0 2 − 1

Gọi A a ; a − 1  là một điểm bất kì thuộc đường thẳng  y = x − 1   .

Tiếp tuyến tại M đi qua   A ⇔ 3 x 0 2 − 12 x 0 + 9 a − 2 x 0 3 + 6 x 0 2 − 1 = a − 1

⇔ 3 x 0 2 − 12 x 0 + 8 a = 2 x 0 3 − 6 x 0 2 (*).

Từ A kẻ được hai tiếp tuyến đến  C ⇔ *    có hai nghiệm  phân biệt.

Ta có  

3 x 0 2 − 12 x 0 + 8 = 0 ⇔ x 0 = 6 ± 2 3 3

Dễ thấy x 0 = 6 ± 2 3 3  không thỏa mãn .

Với   x 0 ≠ 6 ± 2 3 3 thì  * ⇔ a = 2 x 0 3 − 6 x 0 2 3 x 0 2 − 12 x 0 + 8 .

Xét hàm số f x = 2 x 3 − 6 x 2 3 x 2 − 12 x + 8 . Ta có f ' x = 6 x 4 − 8 x 3 + 20 x 2 − 16 x 3 x 2 − 12 x + 8 2 .

Bảng biến thiên của :

Vậy để (*) có 2 nghiệm phân biệt thì  a ∈ 0 ; 4   . Suy ra tập  T = 0 ; − 1 , 4 ; 3

Do đó tổng tung độ các điểm thuộc T bằng 2.

 

Bình luận (0)
SD
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 3 2017 lúc 18:27

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 11 2019 lúc 12:57

Đáp án A

Điều kiện: x ≠ 2.  Do M là giao điểm của đồ thị hàm số y = x + 1 x − 2  với trục hoành nên  M − 1 ; 0

Ta có y ' = − 3 x − 2 2 nên hệ số góc của tiếp tuyến tại M là k = y ' − 1 = − 1 3  

Do đó suy ra phương trình tiếp tuyến là  y = − 1 3 x − 1 3 x + 3 y + 1

Bình luận (0)
LA
Xem chi tiết
LG
10 tháng 4 2018 lúc 20:39

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 12 2018 lúc 6:21

Chọn A

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 7 2017 lúc 6:30

Đáp án A

Bình luận (0)
PM
Xem chi tiết
KR
Xem chi tiết
NT
2 tháng 7 2023 lúc 15:02

x^2+(y-1)^2=4

=>R=2 và I(0;1)

A(1;1-m) thuộc (C)

y'=4x^3-4mx

=>y'(1)=4-4m

PT Δsẽ là y=(4-m)(x-1)+1-m

Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)

Giả sử (Δ) cắt (λ) tại M,N

\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)

MN min khi d(I;(Δ)) max

=>d(I;(Δ))=IF 

=>Δ vuông góc IF

Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)

=>vecto u=(1;4-4m)

=>1*3/4-(4-4m)=0

=>m=13/16

Bình luận (0)