Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 7 2019 lúc 8:34

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 4 2017 lúc 3:20

Đáp án A

Hàm số chẵn là: y = cos x

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 2 2018 lúc 11:18

Đáp án C.

+ Xét hàm y = f(x) = cos 3x

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-3x) = cos 3x = f(x)

Do đó, y = f(x) = cos 3x  là hàm chẵn trên tập xác định của nó.

+ Xét hàm y = g(x) =  sin (x2 + 1)

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D  và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x)

Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.

+ Xét hàm y = h(x) = tan2 x

TXĐ: D = R\{π/2 + k2π, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D  và h(-x) = tan2 (-x) = tan2 x = h(x)

Do đó: y = h(x) = tan2 x  là hàm số chẵn trên D

+ Xét hàm y = t(x) = cot x.

TXĐ: D = R\{kπ, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)

Do đó: y = t(x) = cot x là hàm số lẻ trên D.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 9 2019 lúc 12:06

Đáp án B

+ Xét hàm y = f(x) = cos (x + π)          

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-x + π) = -cos x = cos (x + π) = f(x)

Do đó y = cos (x + π) là hàm số chẵn .

+ Xét hàm y = g(x) = tan2016x

TXĐ: D = R\{π/2 + kπ, k  Z}

Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = tan2016(-x) = (-tan x)2016 = tan2016x = g(x)  

Do đó: y tan2016là hàm chẵn trên tập xác định của nó.

+Xét hàm y = cot2x

f(-x) = cot(-2x) = - cot 2x = -f(x) nên đây là hàm số lẻ.

+ Xét hàm số  y = 1-sinx

f(-x) = 1- sin(-x) = 1+ sin x

Nên hàm số không chẵn không lẻ

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 8 2021 lúc 18:59

Hàm \(y=x.sinx\) không phải hàm tuần hoàn

Bình luận (2)
NT
28 tháng 8 2021 lúc 20:52

Chọn A

Bình luận (0)
H24
Xem chi tiết
BK
17 tháng 8 2023 lúc 11:19

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:01

a) Hàm số \(y = \sin 2x + \tan 2x\) có nghĩa khi \(tan 2x\) có nghĩa

\(\cos 2x \ne 0\;\; \Leftrightarrow 2x \ne \frac{\pi }{2}\;\;\;\; \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\) \

 Vây tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - 2x} \right) + \tan \left( { - 2x} \right) =  - \sin 2x - \tan 2x =  - \left( {\sin 2x + \tan 2x} \right) =  - f\left( x \right),\;\forall x \in D\).

Vậy \(y = \sin 2x + \tan 2x\) là hàm số lẻ

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) + {\sin ^2}\left( { - x} \right) = \cos x + {\sin ^2}x = f\left( x \right),\;\forall x \in D\)

Vậy \(y = \cos x + {\sin ^2}x\) là hàm số chẵn

Bình luận (0)
HM
21 tháng 9 2023 lúc 23:01

c) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left( { - 2x} \right) =  - \sin x.\cos 2x =  - f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x\cos \;2x\) là hàm số lẻ

d) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) =  - \sin x + \cos x \ne f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x + \cos x\) không là hàm số chẵn cũng không là hàm số lẻ

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:01

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)

Bình luận (0)
TT
Xem chi tiết