Chứng minh:
1 x x + 1 + 1 x + 1 x + 2 + 1 x + 2 x + 3 + 1 x + 3 x + 4 + 1 x + 4 x + 5 + 1 x + 5
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
chứng minh biểu thúc không phụ thuộc vào biến:
a) (x-1)^3 - (x-1)(x^2+x+1)-3(1-x)x
chứng minh giúp mk với được ko
a, Biểu thức = x^3-3x^2+3x-1-(x^3-1)-3.(x-x^2)
=x^3-3x^2+3x-1-x^2+1-3x+3x^2 = 0
=> giá trị của biểu thức trên ko phụ thuộc vào biến
Chứng minh rằng : 1/x+1-1/x+2=1/(x+1)(x+2)
`1/(x+1)-1/(x+2)`
`=(x+2-x-1)/((x+1)(x+2))`
`=1/((x+1)(x+2))(ĐPCM)`
\(\dfrac{1}{x+1}-\dfrac{1}{x+2}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\left(đpcm\right)\)
Ta có: \(\dfrac{1}{x+1}-\dfrac{1}{x+2}\)
\(=\dfrac{x+2}{\left(x+1\right)\left(x+2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)(đpcm)
a)chứng minh rằng : với mọi số tự nhiên n : (x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2 +1
b) chứng minh rằng với mọi số tự nhiên n : ( x^n -1) ( x^n+1 -1) chia hết cho (x+1)(x-1)
1. chứng minh x4 - x + 1 = 0 vô nghiệm
2. chứng minh x4 - x2 + 1 = 0 vô nghiệm
3. chứng minh x4 - x3 + 1 = 0 vô nghiệm
4. chứng minh a2 + \(\dfrac{1}{a^2}\)
biết a khác 0
2) \(x^4-x^2+1=0\)(1)
Đặt: t=x2, khi đó:
(1)\(\Leftrightarrow t^2-t+1=0\)
\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(2\right)\)
\(\Rightarrow\left(2\right)\) vô nghiệm => (1) vô nghiệm
Mọi người giúp em làm bài này với, em đang cần gấp. Cảm ơn
Câu 2: Chứng minh x^3k+1 + x^2 + 1 chia hết cho x^2+x+ I.
Câu 3: Chứng minh x^3k+2 + x + 1 chia hết cho x^2 + x + 1.
Câu 4: Chứng minh x^6 − 1 chia hết cho x^4 +x2 + 1.
Chứng minh bdt x-x^2 +1/x-x^2-1 <1
Ta có: (x-x2+1)/(x-x2-1) - 1
= (x-x2+1)/(x-x2-1) - (x-x2-1)/(x-x2-1)
= (x-x2+1-x+x2+1)/(x-x2-1) = 2/(x-x2-1) = -2/(x2-x+1)
Ta có: x2-x+1 = x2-x+1/4+3/4 = (x - 1/2)2 + 3/4 > 0 với mọi x
Nên (x-x2+1)/(x-x2-1) < 1 (đpcm)
chứng minh: x(x-1)+8(x-1)=(x-1).(x+8)
\(x\left(x-1\right)+8\left(x-1\right)=\left(x-1\right)\left(x+8\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+8\right)=\left(x-1\right)\left(x+8\right)\)
\(\left(đpcm\right)\)
Chứng minh: x 3 - 1 x - 1 = x + x + 1 v ớ i x ≥ v à x ≠ 1