\(TínhA=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)
Tính
a,\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
b,\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
c,\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
d,\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}=6\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^2}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}=10\)
\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=2\sqrt{5}+4\sqrt{2}\)
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
b: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}\)
=6
c: Ta có: \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
d: Ta có: \(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}+\sqrt{53+4\sqrt{90}}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}\)
\(=2\sqrt{5}+4\sqrt{2}\)
(1) tính
a) \(\sqrt{3}+2\sqrt{12}+4\sqrt{75}-\sqrt{300}\)
b) \(2\sqrt{20}+\sqrt{\left(1-\sqrt{5}\right)^2}-\dfrac{20}{\sqrt{5}+1}\)
c) \(\dfrac{6}{\sqrt{13}-1}+\dfrac{6}{\sqrt{13}+1}\)
d) \(\sin^238^0+\cot23^0+\sin^252^0-\tan67^0\)
giúp mk vs ạ mai mk hc rồi
\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)
(1) tính
a) \(\sqrt{3}+2\sqrt{12}+4\sqrt{75}-\sqrt{300}\)
b) \(2\sqrt{20}+\sqrt{\left(1-\sqrt{5}\right)^2}-\dfrac{20}{\sqrt{5}+1}\)
c) \(\dfrac{6}{\sqrt{13}-1}+\dfrac{6}{\sqrt{13}+1}\)
d) \(\sin^238^0+\cot23^0+\sin^252^0-\tan67^0\)
giúp mk vs ạ mai mk hc rồi
a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)
\(=15\sqrt{3}\)
b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)
=-6
Tìm x biết x = \(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)
\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)
\(\Leftrightarrow x=\sqrt{5+\sqrt{13+x}}\) (\(x\ge0\))
\(\Leftrightarrow x^2=5+\sqrt{13+x}\)
\(\Leftrightarrow x^2-9=\sqrt{13+x}-4\)
\(\Leftrightarrow\left(x-3\right).\left(x+3\right)=\dfrac{x-3}{\sqrt{13+x}+4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=\dfrac{1}{\sqrt{x+13}+4}\left(∗\right)\end{matrix}\right.\)
Xét (*) ta có VT \(\ge3\) (1)
mà \(VP=\dfrac{1}{\sqrt{x+13}+4}\le\dfrac{1}{4}\) (2)
Từ (1) và (2) dễ thấy (*) vô nghiệm
Hay x = 3
Thực hiện các phép tính sau:
\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
Tính:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}\)
\(B=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}\)
\(C=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)
Ta có A > 0
Từ đó \(A^2=2+\sqrt{2+\sqrt{2+...}}\Leftrightarrow A^2=2+A\Leftrightarrow A^2-A-2=0\)
\(\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\Leftrightarrow\orbr{\begin{cases}A+1=0\\A-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}A=-1\\A=2\end{cases}}\)
Do A > 0 nên A= 2
b, tương tự
c,\(C>2\)
Xét \(C^2=5+\sqrt{13+\sqrt{5+\sqrt{13...}}}\)
\(\left(C^2-5\right)^2=13+C\Leftrightarrow C^4-10C^2-C+12=0\Leftrightarrow\left(C^4-9C^2\right)-\left(C^2-9\right)-\left(C-3\right)=0\)
\(\Leftrightarrow\left(C-3\right)\left[\left(C+3\right)\left(C-1\right)\left(C+1\right)-1\right]=0\)
VÌ C> 2 => C-3 = 0 => C=3
\(\frac{\sqrt{13+2\sqrt{11}}+\sqrt{13-2\sqrt{11}}}{\sqrt{13+5\sqrt{5}}}-\sqrt{3-2\sqrt{2}}\)
Giup minh voi
\(\sqrt[3]{5+2\sqrt{13}}\sqrt[3]{5-2\sqrt{13}}\)
tính x biết x=\(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+...}}}}}\)
https://olm.vn/hoi-dap/detail/7291365157.html
tham khảo! bài này mk làm ở đó hơi thieuus bạn chỉ cần + ... là đc