Những câu hỏi liên quan
TL
Xem chi tiết
TT
3 tháng 2 2021 lúc 10:46

Bài 1: Giải các phương trình sau:

a) 3(2,2-0,3x)=2,6 + (0,1x-4)

<=> 6.6 - 0.9x = 2,6 + 0,1x - 4

<=> - 0.9x - 0,1x = -6.6 -1,4

<=> -x = -8

<=> x = 8

Vậy x = 8

b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)

<=> 3,6 - x - 0,5 = x - 5,5 + x

<=> - x - 3,1 = -5,5

<=> - x = -2.4

<=> x = 2.4

Vậy  x = 2.4

Bình luận (0)
H24
Xem chi tiết
MP
15 tháng 8 2023 lúc 19:54

\(a,2^{3x-1}=2^{-\left(x+1\right)}\Rightarrow3x-1=-\left(x+1\right)\Rightarrow x=\dfrac{1}{2}\)

\(b,ln\left(2e^{2x}\right)=ln5\)

\(\Rightarrow ln2+lne^{2x}=ln5\)

\(\Rightarrow ln2+2x=ln5\)

\(\Rightarrow2x=ln5-ln2=ln\dfrac{5}{2}\)

Như vậy \(x=\dfrac{1}{2}ln\dfrac{5}{2}\)

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 6 2023 lúc 20:30

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

Bình luận (0)
H24
Xem chi tiết
TM
23 tháng 9 2023 lúc 10:03

(a) Điều kiện: \(\left\{{}\begin{matrix}x+1\ge0\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>5\end{matrix}\right.\Rightarrow x>5\).

Phương trình tương đương: \(\sqrt{x+1}=2\sqrt{x-5}\)

\(\Leftrightarrow x+1=4\left(x-5\right)\Leftrightarrow x=7\left(TM\right)\).

Vậy: \(S=\left\{7\right\}.\)

 

(b) Phương trình tương đương: \(x^2-1=8\)

\(\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\).

Vậy: \(S=\left\{\pm3\right\}\)

Bình luận (0)
NT
23 tháng 9 2023 lúc 9:56

a: ĐKXĐ: x+1>=0 và x-5>0

=>x>5

\(\dfrac{\sqrt{x+1}}{\sqrt{x-5}}=2\)

=>\(\sqrt{\dfrac{x+1}{x-5}}=2\)

=>\(\dfrac{x+1}{x-5}=4\)

=>4x-20=x+1

=>3x=21

=>x=7

b: ĐKXĐ: \(x\in R\)

\(\sqrt[3]{x^2-1}=2\)

=>x^2-1=8

=>x^2=9

=>x=3 hoặc x=-3

Bình luận (0)
BR
Xem chi tiết
H24
22 tháng 3 2022 lúc 13:44

\(a,\\ \Leftrightarrow3x-x=10-6\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\\ b,\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Bình luận (1)
NC
22 tháng 3 2022 lúc 13:45

\(a,\Leftrightarrow3x-x=10-6\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=\dfrac{4}{2}=2\)

Vậy phương trình có tập nghiệm S = \(\left\{2\right\}\)

\(b,\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow x+1=0\)           hoặc            \(\Leftrightarrow x-2=0\)       

\(\Leftrightarrow x=-1\)                                                     \(\Leftrightarrow x=2\)

Vậy phương trình có tập nghiệm S = \(\left\{-1;2\right\}\)

Bình luận (0)
QN
22 tháng 3 2022 lúc 13:48

a)3x + 6 = x +10
 ⟺3x-x=10-6
 ⟺2x=4 ⟺x=2
Vậy tập nghiệm của phương trình là S={2}
b) x(x + 1) - 2 (x + 1) = 0
 ⟺(x+1)(x-2)=0
 ⟺x+1=0        ⟺x=-1
     x-2=0         ⟺x=2
Vậy tập nghiệm của phương trình là S={2;-1}

Bình luận (0)
NQ
Xem chi tiết
NT
6 tháng 3 2021 lúc 20:39

a) Ta có: \(\left|x^2-x+2\right|-3x-7=0\)

\(\Leftrightarrow\left|x^2-x+2\right|=3x+7\)

\(\Leftrightarrow x^2-x+2=3x+7\)(Vì \(x^2-x+2>0\forall x\))

\(\Leftrightarrow x^2-x+2-3x-7=0\)

\(\Leftrightarrow x^2-4x-5=0\)

\(\Leftrightarrow x^2-5x+x-5=0\)

\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy: S={5;-1}

Bình luận (1)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:43

a)  \(\sqrt {2{x^2} - 14}  = x - 1\quad \left( 1 \right)\)

ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1.\)

\( \Rightarrow \) TXĐ: \(D = \left[ {1; + \infty } \right)\)

\(\begin{array}{l}\left( 1 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 14} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 14 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 15 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 3}\\{x =  - 5}\end{array}} \right.\end{array}\)

Nhận thấy \(x = 3\) thỏa mãn điều kiện

Vậy nghiệm của phương trình \(\left( 1 \right)\)  là: \(x = 3\)

b)  \(\sqrt { - {x^2} - 5x + 2}  = \sqrt {{x^2} - 2x - 3} \quad \left( 2 \right)\)

ĐK: \(\left\{ {\begin{array}{*{20}{c}}{ - {x^2} - 5x + 2 \ge 0}\\{{x^2} - 2x - 3 \ge 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\frac{{ - 5 - \sqrt {33} }}{2} \le x \le  - 1.\)

\( \Rightarrow \) TXĐ: \(D = \left[ {\frac{{ - 5 - \sqrt {33} }}{2}; - 1} \right].\)

\(\begin{array}{l}\left( 2 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt { - {x^2} - 5x + 2} } \right)^2} = {\left( {\sqrt {{x^2} - 2x - 3} } \right)^2}\\ \Leftrightarrow \,\, - {x^2} - 5x + 2 = {x^2} - 2x - 3\\ \Leftrightarrow \,\,2{x^2} + 3x - 5 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - \frac{5}{2}}\end{array}} \right.\end{array}\)

Nhận thấy \(x =  - \frac{5}{2}\) thỏa mãn điều kiện

Vậy nghiệm của phương trình \(\left( 2 \right)\) là: \(x =  - \frac{5}{2}\)

Bình luận (0)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:35

a) \(\sqrt {2{x^2} + x + 3}  = 1 - x\)

Bình phương hai vế của phương trình ta được:

\(2{x^2} + x + 3 = 1 - 2x + {x^2}\)

Sau khi thu gọn ta được \({x^2} + 3x + 2 = 0\). Từ đó x=-1 hoặc x=-2

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy cả hai giá trị \(x =  - 1;x =  - 2\) đều thỏa mãn

Vậy phương trình có tập nghiệm \(S = \left\{ { - 1; - 2} \right\}\)

b) \(\sqrt {3{x^2} - 13x + 14}  = x - 3\)

Bình phương hai vế của phương trình ta được:
\(3{x^2} - 13x + 14 = {x^2} - 6x + 9\)

Sau khi thu gọn ta được \(2{x^2} - 7x + 5 = 0\). Từ đó \(x = 1\) hoặc \(x = \frac{5}{2}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy không có giá trị nào của x thỏa mãn

Vậy phương trình vô nghiệm.

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 3 2022 lúc 19:58

b: =>(x-5)2+6(x-5)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

c: \(\Leftrightarrow x^2-x+2=2\)

=>x(x-1)=0

=>x=0(loại) hoặc x=1(nhận)

Bình luận (0)
H24
Xem chi tiết
NM
13 tháng 9 2021 lúc 15:11

\(a,\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\\ \Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x+3=1\end{matrix}\right.\Leftrightarrow x=-1\left(N\right)\)

Bình luận (3)
NM
13 tháng 9 2021 lúc 15:17

\(b,\Leftrightarrow3x^2+3x-2\sqrt{x^2+x}=0\left(x\le-1;x\ge0\right)\\ \Leftrightarrow3x\left(x-1\right)-2\sqrt{x\left(x+1\right)}=0\\ \Leftrightarrow\sqrt{x\left(x+1\right)}\left(3\sqrt{x\left(x-1\right)}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\sqrt{x\left(x-1\right)}=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2-x-\dfrac{4}{9}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\9x^2-9x-4=0\left(1\right)\end{matrix}\right.\)

\(\Delta\left(1\right)=81-4\left(-4\right)\cdot9=225\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{9-15}{18}\\x=\dfrac{9+15}{18}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-\dfrac{1}{3}\left(L\right)\\x=\dfrac{4}{3}\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)

Bình luận (1)