Những câu hỏi liên quan
PB
Xem chi tiết
CT
14 tháng 10 2018 lúc 9:35

Chọn A.

Ta có:

+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.

+ sin4x + cos4x = 1 - 3sin2x.cos2x.

Do đó

A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 9 2023 lúc 15:10

loading...  

Bình luận (0)
NH
16 tháng 9 2023 lúc 15:11

Theo bài ra ta có: x-9=81

x=81+9

x=90

Vậy giá trị của x là 90.

Bình luận (0)
H24
16 tháng 9 2023 lúc 15:16

Để tìm giá trị của x, ta có thể giải phương trình (x-9) = 81. Bằng cách thực hiện phép tính, ta có x = 90.

Bình luận (0)
NT
Xem chi tiết
H24
14 tháng 6 2020 lúc 23:13

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 9 2019 lúc 17:55

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 12 2018 lúc 7:23

Đáp án C

Bình luận (0)
ND
Xem chi tiết
TA
Xem chi tiết
TH
9 tháng 8 2019 lúc 13:26

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

Bình luận (0)
TH
9 tháng 8 2019 lúc 13:28

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)

Bình luận (0)
TH
9 tháng 8 2019 lúc 13:32

\(G=\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}=\frac{-2sin4xsin2x-sin4x}{-2sin4xsin2x+sin4x}\)

\(G=\frac{-sin4x\left(2sin2x+1\right)}{-sin4x\left(2sin2x-1\right)}=\frac{2sin2x+1}{2sin2x-1}\)

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 3 2019 lúc 9:37

Chọn C.

Ta có A = sin4x +  cos4x - ¼cos 4x = ( sin2x + cos2x) 2 - 2sin2x.cos2x - ¼cos 4x

= 1 - ½sin22x - ¼cos4x = 1 - ¼(1 – cos4x) - ¼cos4x = 3/4

Bình luận (1)
PB
Xem chi tiết
CT
2 tháng 7 2018 lúc 11:37

Chọn C.

Ta có: C = 2( sin4x + cos4x + sin2x.cos2x) 2 - ( sin8x + cos8x)

= 2 [ (sin2x + cos2x) 2 - sin2x.cos2x]2 - [ (sin4x + cos4x)2 - 2sin4x.cos4x]

= 2[ 1 - sin2x.cos2x]2 - [ (sin2x+ cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x

= 2[ 1- sin2x.cos2x]2 - [ 1 - 2sin2x.cos2x]2  + 2sin4x.cos4x

= 2( 1 - 2sin2xcos2x+ sin4x.cos4x) –( 1- 4sin2xcos2x+ 4sin4xcos4x) + 2sin4x.cos4x

=  1.

Bình luận (0)