Chứng minh rằng ( 2 9 - 4 3 ) ( 2 5 . 2 3 ) chia hết cho 7
Chứng minh rằng 9/5^2+9/11^2+...+9/305^2 < 3/4
S=1/2^2+1/3^2+1/4^2+....+1/9^2.Chứng minh rằng 2/5 < S <8/9
Cho S=1/2+1/3+1/4+...+1/31+1/32 a) chứng minh rằng S>5/2 b) chứng minh rằng S<9/2
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
S=1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2. Chứng minh rằng 2/5 < S <8/9
câu nào cũng trả lời.trốn học à
mình hỏi giúp bạn mình thôi
BÀI 3*
a.Cho S=1/31+1/32+1/33+...+1/60 . Chứng minh rằng 3/5<S<4/5
b. Cho M =1/2^2+1/3^2+1/4^2+...+1/9^2. Chứng minh rằng 2/5<S<8/9
CÁC BẠN GIÚP MÌNH VỚI
BẠN NÀO NHANH MÌNH TICK CHO!
S=1/2^2+1/3^2+1/4^2+....+1/9^2
chứng minh rằng:2/5<S<8/9
S<1/2^2 + 1/2.3 + 1/3.4 +...+ 1/8.9
S<1/4 + 1/2 - 1/3 + 1/3 - 1/4+...+1/8 - 1/9
S<1/4 + 1/2 - 1/9
S<23/36<8/9 (1)
Mặt khác: S>1/2^2 + 1/3.4 + ...+ 1/9*10
S>1/4 + 1/3 - 1/4 + ... + 1/9 - 1/10
S>1/4 + 1/3 - 1/10
S>29/60>2/5 (2)
Từ (1),(2)
=> 2/5<S<8/9
A = 1/2² + 1/3² + 1/4² + 1/5² + ... + 1/8² + 1/9² Chứng minh rằng: 2/5 < A < 1
Ta có:
Do \(2^2>1.2\) ; \(3^2>2.3\) ;...; \(9^2>8.9\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< 1-\dfrac{1}{9}< 1\) (1)
Lại có: \(2^2< 2.3\) ; \(3^2< 3.4\) ;...; \(9^2< 9.10\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\) (2)
(1);(2) \(\Rightarrow\dfrac{2}{5}< A< 1\)
Cho S = 1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2
chứng minh rằng 2/5 < S < 8/9
cho : S = 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 +......+ 1/9^2 chứng minh rằng 2/5 < S < 8 / 9
Ta có S=1/2^2+1/3^2+1/4^2+...+1/9^2
<1/2²+1/2*3+1/3*4+....+1/8*9
=1/2²+1/2-1/3+1/3-1/4+....+1/8-1/9
=1/4+1/2-1/9=23/36<32/36=8/9 (♪)
Ta lại có S=1/2^2+1/3^2+1/4^2+...+1/9^2
>1/2²+1/3*4+1/4*5+....+1/9*10
=1/2²+1/3-1/4+1/4-1/5+........+1/9-1/10
=1/2²+1/3-1/10
=19/20>8/20=2/5 ( ♫)
Từ (♪)( ♫) cho ta đpcm
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2