JJ

A = 1/2² + 1/3² + 1/4² + 1/5² + ... + 1/8² + 1/9² Chứng minh rằng: 2/5 < A < 1

NL
18 tháng 3 2023 lúc 8:14

Ta có:

Do \(2^2>1.2\) ; \(3^2>2.3\) ;...; \(9^2>8.9\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(\Rightarrow A< 1-\dfrac{1}{9}< 1\) (1)

Lại có: \(2^2< 2.3\) ; \(3^2< 3.4\) ;...; \(9^2< 9.10\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(\Rightarrow A>\dfrac{2}{5}\) (2)

(1);(2) \(\Rightarrow\dfrac{2}{5}< A< 1\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
TM
Xem chi tiết
PK
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NG
Xem chi tiết