Khai triển 3 x – 4 y 2 ta được
A. 9 x 2 – 24 x y + 16 y 2
B. 9 x 2 – 12 x y + 16 y 2
C. 9 x 2 – 24 x y + 4 y 2
D. 9 x 2 – 6 x y + 16 y 2
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
Khai triển:
a,(3x-4)^7
b,( x - 3/4)^8
c,( 1/2 x - 3 y)^6
biết hệ số hạn thứ 3 trong khai triển ( x-1/x)^2 là y 66 tìm số hạn không chứa x trong khai triển đó
Khai triển hằng đẳng thức
1)-(y+6)^2
2)-(4-y)^2
3)-(2/3+x)^2
4)-(x-3/2)^2
5)-(2+3y)^2
6)-(2y-3)^2
7)-(5x+2y)^2
8)-(2x-3/2)^2
\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)
\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)
\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)
\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)
\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)
.... mấy ý còn lại bn tự lm nhé, tương tự thhooi
1) \(-\left(y+6\right)^2=-y^2-12y-36\)
2) \(-\left(4-y\right)^2=-y^2+8y-16\)
3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)
4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)
5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)
6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)
7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)
8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)
hệ số của x4y trong khai triển của (2x2 + 3y)3
khai triển :
\(\left(2x^2+3y\right)^3=\left(2x^2\right)^3+3.\left(2x^2\right)^2.3y+3.2x^2.\left(3y\right)^2+\left(3y\right)^3\)
\(=8x^6+3.4x^4.3y+3.2x^2.9y+27y^3=8x^6+36x^4y+54x^2y+27y^3\)
Vậy hệ số của x4y trong khai triển.... là 36
Hãy vẽ sơ đồ hình cây của khai triển \({(a + b)^4}\) được mô tả như Hình 8.9. Sau khi khai triển, ta thu được một tổng gồm \({2^4}\) (theo quy tắc nhân) đơn thức có dạng x. y. z. t, trong đó mỗi x, y, z, t là a hoặc b. Chẳng hạn, nếu x, y, t là a, còn z là b thì ta có đơn thức a. a. b. a, thu gọn là \({a^3}b\). Để có đơn thức này, thì trong 4 nhân tử x, y, z, t có 1 nhân tử là b, 3 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_4^1\).
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau.
\({a^4};\quad {a^3}b;\quad {a^2}{b^2};\quad a{b^3};\quad {b^4}?\)
Số đơn thức đồng dạng với \({a^4}\) trong tổng là \(C_4^0 = 1\)
Số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_4^4 = 1\)
Số đơn thức đồng dạng với \({a^2}{b^2}\) trong tổng là \(C_4^2 = 6\)
Số đơn thức đồng dạng với \(a{b^3}\) trong tổng là \(C_4^3 = 1\)
Số đơn thức đồng dạng với \({b^4}\) trong tổng là \(C_4^4 = 1\)
Khai triển (X^2 + y^3 )
2. Trong khai triển nhị thức ( a +2)^n +6 ( n€N). Có tất cả 17 số hạng . Vậy n bằng?
6. Trong khai triển (2a -1)^6 tổng 3 số hạng đầu là?
7. Trong khai triển ( x - √y )^16 tổng hai số hạng cuối là
2/ \(\left(a+b\right)^k\Rightarrow k+1\left(so-hang\right)\)
\(\Rightarrow n+6+1=17\Rightarrow n=10\)
6/ \(\left(2a-1\right)^6=\sum\limits^6_{k=0}C^k_6.2^{6-k}.\left(-1\right)^k.a^{6-k}\)
\(\Rightarrow tong-3-so-hang-dau=C^0_6.2^6+C^1_6.2^5.\left(-1\right)+C^2_6.2^4.\left(-1\right)^2=...\)
7/ \(\left(x-\sqrt{y}\right)^{16}=\left(x-y^{\dfrac{1}{2}}\right)^{16}\)
\(\Rightarrow tong-2-so-hang-cuoi=C^{16}_{16}+C^{15}_{16}=...\)
Bài 1 khai triển các hằng đẳng thức
K) 4.x^2=
L) 1/9x^2 -25/16 y ^2
M)1/4x^2-4x^2
N) 4 /49 -4x^2
O) (x-3) (x+3)
P (x +4) (x -4 )
Mik cần gấp giúp mik vs
m) \(\dfrac{1}{4}x^2-4x^2=\left(\dfrac{1}{2}x-2x\right)\left(\dfrac{1}{2}x+2x\right)\)
n) \(\dfrac{4}{49}-4x^2=\left(\dfrac{2}{7}-2x\right)\left(\dfrac{2}{7}+2x\right)\)
o) \(\left(x-3\right)\left(x+3\right)=x^2-9\)
Khai triển(x+y)^7 thành tổng các đơn thức
TÌM hệ số của x7 trong khai triển (3+2x)^9
\(\left(3+2x\right)^9=\sum\limits^n_{k=0}C^k_9.\left(2x\right)^{9-k}.3^k\)
\(\Rightarrow9-k=7\Rightarrow k=2\)
Vậy hệ số \(x^7\) là \(C^2_9.2^7.3^2=41472\)