Những câu hỏi liên quan
NH
Xem chi tiết
NI
12 tháng 8 2021 lúc 21:40

\(2,\)

A B H C D

Kẻ BH vuông góc với CD tại H

Xét hai tam giác BDH và BCH:

+) BH là cạnh chung

+) Góc BHD = góc BHC = 90 độ

+) DH = CH 

=> Tam giác BDH = tam giác HCH (c.g.c)

=> BD = BC

Khác: DC = BC

=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ

Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
19 tháng 8 2021 lúc 22:24

a: Xét ΔADC vuông tại D có 

\(\tan\widehat{ACD}=\dfrac{AD}{DC}=\dfrac{1}{2}\)

nên \(\widehat{ACD}\simeq27^0\)

Áp dụng định lí Pytago vào ΔACD vuông tại D, ta được:

\(AC^2=AD^2+DC^2\)

\(\Leftrightarrow5\cdot AD^2=20\)

\(\Leftrightarrow AD=2\left(cm\right)\)

\(\Leftrightarrow DC=4\left(cm\right)\)

b: Xét ΔADC vuông tại D có DH là đường cao ứng với cạnh huyền AC nên ta có: 

\(DH\cdot AC=DC\cdot DA\)

\(\Leftrightarrow DH\cdot2\sqrt{5}=2\cdot4=8\)

hay \(DH=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 8 2021 lúc 13:08

a.

\(tan\widehat{ACD}=\dfrac{AD}{CD}=\dfrac{1}{2}\Rightarrow\widehat{ACD}\approx26^034'\)

Áp dụng Pitago cho tam giác vuông ACD:

\(AC^2=AD^2+CD^2\Leftrightarrow\left(2\sqrt{5}\right)^2=AD^2+\left(2AD\right)^2\)

\(\Rightarrow AD^2=4\Rightarrow AD=2\Rightarrow AB=AD=2\)

\(CD=2AB=4\)

b.

Áp dụng hệ thức lượng trong tam giác vuông ACD:

\(DH.AC=AD.CD\)

\(\Rightarrow DH=\dfrac{AD.CD}{AC}=\dfrac{4.2}{2\sqrt{5}}=\dfrac{4\sqrt{5}}{5}\)

Bình luận (0)
NL
20 tháng 8 2021 lúc 13:09

undefined

Bình luận (0)
HS
Xem chi tiết
NA
Xem chi tiết
DH
12 tháng 7 2021 lúc 21:28

a) Xét tam giác \(ADC\)vuông tại \(D\)

\(tan\widehat{ACD}=\frac{AD}{DC}=\frac{1}{2}\Rightarrow\widehat{ACD}=arctan\frac{1}{2}\)

b) Xét tam giác \(ADC\)vuông tại \(D\)

\(AC^2=AD^2+DC^2=AD^2+4AD^2=5AD^2\)

\(\Leftrightarrow AD=\sqrt{\frac{AC^2}{5}}=\sqrt{\frac{25^2}{5}}=5\sqrt{5}\left(cm\right)\)

\(AB=AD=5\sqrt{5}\left(cm\right),CD=2AD=10\sqrt{5}\left(cm\right)\).

c) Xét tam giác \(ADC\)vuông tại \(D\)

\(DH=\frac{AD.DC}{AC}=\frac{10\sqrt{5}.5\sqrt{5}}{25}=10\left(cm\right)\)

\(AH=\frac{AD^2}{AC}=\frac{AB^2}{AC}\Leftrightarrow\frac{AB}{AC}=\frac{AH}{AB}\)

Xét tam giác \(ABH\)và tam giác \(ACB\):

\(\widehat{A}\)chung

\(\frac{AB}{AC}=\frac{AH}{AB}\)

suy ra \(\Delta ABH~\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{ACB}\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
7 tháng 3 2017 lúc 8:26

Đáp án A

Ta có thể tích khối tròn xoay tạo thành bằng hiệu thể tích hình trụ bán kính đáy AD, chiều cao CD trừ cho thể tích nón đỉnh B, bán kính đáy BM chiều cao CM.

Ta có

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 8 2017 lúc 10:45

Chọn B

Ta có thể tích khối tròn xoay tạo thành bằng hiệu

thể tích hình trụ bán kính đáy AD, chiều cao

CD trừ cho thể tích nón đỉnh B, bán kính đáy

BM chiều cao CM.

Ta có:

Bình luận (0)
TM
Xem chi tiết
TM
28 tháng 8 2021 lúc 14:39

cần gấp nha mn !

ai nhanh mik tick cho :>>>

Bình luận (0)
TB
Xem chi tiết
H24
15 tháng 6 2017 lúc 19:41

3)áp dụng pytago để tính

Bình luận (0)