Những câu hỏi liên quan
MD
Xem chi tiết
TH
2 tháng 1 2021 lúc 19:39

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

Bình luận (0)
My
Xem chi tiết
PD
9 tháng 2 2019 lúc 21:38

\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(\Rightarrow1\ge2xy\)

\(\Rightarrow\frac{1}{2}\ge xy\)

Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Vậy \(Min_{x+y}=\sqrt{2}\)

Làm tương tự với max

Bình luận (0)
KS
9 tháng 2 2019 lúc 21:58

Thêm đk: x,y>0

Tìm max:

Áp dụng BĐT bunhiacopxki ta có:

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra <=> x=y

KL:...............................

Bình luận (0)
H24
10 tháng 2 2019 lúc 6:47

Tìm Max nhá:

\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)

Suy ra \(\left(x+y\right)^2=1+2xy\)

Lại có: \(1=x^2+y^2\ge2xy\)

Suy ra \(\left(x+y\right)^2=1+2xy\le1+1=2\Leftrightarrow x+y\le\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=\sqrt{\frac{1}{2}}\)

Ê đạt: cái của bạn làm là tìm max chứ đâu phải min?

Bình luận (0)
DA
Xem chi tiết
VN
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
30 tháng 1 2022 lúc 21:39

Lần lượt cộng vế và trừ vế 2 đẳng thức ta được:

\(\left\{{}\begin{matrix}\dfrac{10}{x}=x^2+3y^2\\\dfrac{2}{y}=3x^2+y^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^3+3xy^2=10\\y^3+3x^2y=2\end{matrix}\right.\)

\(\Rightarrow x^3+3xy^2-3x^2y-y^3=8\)

\(\Rightarrow\left(x-y\right)^3=8\)

\(\Rightarrow x-y=2\)

Bình luận (0)
KT
Xem chi tiết
CS
Xem chi tiết
Xem chi tiết