Biết : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(a\ne0;b\ne0;c\ne0\right)\)
Tính giá trị biểu thức :\(\frac{a^{670}.b^{672}.c^{673}}{a^{2015}}\)
Tìm x,biết \(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\left(a,b,c\ne0\right)\)
gvjcdxrft564y7v dxzcf564zv nbcy564zv c65478erzcv 5647 zc645 ycv6f7dsfy7t4zcv3o6cv6hjyjunynuyyuhu
Áp dụng t.c dãy ts bằng nhau
\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{x}\)
Vậy \(x=\frac{1}{2}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\left(a+b+c\ne0\right)\)
vì \(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\left(a,b,c\ne0\right)\)
=> \(x=\frac{1}{2}\)
p/s: nếu ko làm cách lật ngược lại còn có 1 trường hợp = 0 nx nhưng nó sẽ KTM =)), mà cách này a+b+c ở mẫu nên ko cần xét
chứng minh Từ \(\frac{a}{b}=\frac{c}{d}\left(\left(a-b\right)\ne0,\left(c-d\right)\ne0\right)\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
bấm vào chỗ đúng đó nguyễn minh tâm
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
Biết: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\left(a,b,c\ne0\right).CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)
\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
bạn áp dụng dãy tỉ số bằng nhau là xong
1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)
2) ta có \(\frac{a}{b}=\frac{c}{d}\)
đặt a=kb và c=kd
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Biết \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\left(a\ne b\ne c;abc\ne0\right)\), tính \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
Ta có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=a+b+c\)
Ngocj Vix sai rooif, \(\frac{2a}{a}=\frac{2b}{b}=\frac{2c}{c}=2\)
Cho \(\frac{a}{3\cdot b+c}=\frac{b}{a\cdot3+c}=\frac{c}{3\cdot a+b}\)\(\left(a+b+c\ne0\right)va\left(a;b;c\ne0\right)\)
Tinh \(\frac{3\cdot b+c}{a}+\frac{a+3\cdot c}{b}+\frac{3\cdot a+b}{c}\)
Vậy dã dễ dàng thấy :
a.3 + c = 3 . a + b = 3 . b + c và a = b = c
Tương tự dãy dưới tính ra :
4 + 4 + 4 = 12
Dãy tính bằng 12
Ban tren oi co the giai thich can ke ra duoc khong ?
Ap dung t/c day ti so bang nhau , ta co :
\(\frac{3\cdot b+c}{a}+\frac{a+3\cdot c}{b}+\frac{3\cdot a+b}{c}=\frac{a+b+c}{3\cdot b+c+a+3\cdot c+3\cdot a+b}\)
\(=\frac{a+b+c}{3\cdot a+a+3\cdot b+b+3\cdot c+c}\)
\(=\frac{a+b+c}{4\cdot a+4\cdot b+4\cdot c}\)
\(=\frac{a+b+c}{4\cdot\left(a+b+c\right)}\)
\(=\frac{1}{4}\)
\(\frac{a}{3\cdot b+c}=\frac{1}{4}\Rightarrow\frac{3\cdot b+c}{a}=4\)
\(\frac{b}{a+3\cdot c}=\frac{1}{4}\Rightarrow\frac{a+3\cdot c}{b}=4\)
\(\frac{c}{3\cdot a+b}=\frac{1}{4}\Rightarrow\frac{3\cdot a+b}{c}=4\)
Ta co \(\frac{3\cdot b+c}{a}+\frac{a+3\cdot c}{b}+\frac{3\cdot a+b}{c}\)
\(=4+4+4\)
\(=12\)
cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) \(\left(a+b+c\ne0\right)\)
Biết a = 2019,tìm b và c
a=2019 =>do a/b=c/a => bc=a2=20192=>b2.c2=20194
doa/b=b/c => b2 =ac => b2=2019c => b2c2=2019c3
=> c3=20193 => c= 2019 => b=2019
Áp dụng tính chất dãy ti số = nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Khi đó : \(\frac{a}{b}=1\Rightarrow a=b\)mà \(a=2019\Rightarrow b=2019\)
\(\frac{c}{a}=1\Rightarrow c=a\) mà \(a=2019\Rightarrow c=2019\)
Vậy b = 2019 và c = 2019
cho \(\frac{a}{b}=\frac{c}{d}\left(b,c,d\ne0;c-2d\ne0\right)\)
chứng minh rằng \(\frac{\left(a-2b^4\right)}{\left(c-2d^4\right)}=\frac{a^4+2017b^4}{c^4+2017d^a}\)