cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
Cho \(a,b,c\ne0\) và \(a+b+c=\frac{a+2b-c}{c}=\frac{b+2c-a}{a}=\frac{c+2a-b}{b}\)
Tính giá trị biểu thức: \(P=\left(2+\frac{a}{b}\right).\left(2+\frac{b}{c}\right).\left(2+\frac{c}{a}\right)\)
Biết a/b = b/c = c/a ( với a , b, c khác 0 )
tính gt biểu thức \(\frac{a^{670}.b^{672}.c^{673}}{a^{2015}}\)
Cho biết \(\frac{a}{b}=\frac{b}{c}=\frac{a}{c},a+b+c\ne0\)
Tính giá trị của biểu thức \(\frac{a^{49}\cdot b^{51}}{c^{100}}\)
chứng minh Từ \(\frac{a}{b}=\frac{c}{d}\left(\left(a-b\right)\ne0,\left(c-d\right)\ne0\right)\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a},a+b+c\ne0\)
Tính giá trị của biểu thức \(\frac{a^{49}.b^{51}}{c^{100}}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\).
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}.\)