Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 3 2018 lúc 14:30

Chọn B.

Xét hệ bất phương trình:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Để hệ bất phương trình có nghiệm thì 5 < -m ⇔ m > -5.

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 11:10

a) Trong cùng mặt phẳng toạ độ Oxy, vẽ ba đường thẳng:

\({d_1}:x - 2y =  - 2\);

\({d_2}:7x - 4y = 16\)

\({d_3}:2x + y =  - 4\)

Thay tọa độ điểm O vào \(x - 2y\) ta được:

\(0 - 2.0 = 0 \ge  - 2\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

Thay tọa độ điểm O vào \(7x - 4y\) ta được:

\(7.0 - 4.0 = 0 \le 16\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

Thay tọa độ điểm O vào \(2x + y\)  ta được:

\(2.0 + 0 = 0 \ge  - 4\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

b)

 

Miền nghiệm của hệ là phần không bị gạch bỏ chung của cả 3 miền nghiệm trên.

Chú ý

Ở câu a, có thể thay điểm O bằng các điểm khác.

Bình luận (0)
HN
Xem chi tiết
LD
30 tháng 11 2023 lúc 20:45

loading...  loading...  

Bình luận (0)
H24
Xem chi tiết
NC
12 tháng 3 2021 lúc 10:24

Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)

Nếu m = 1, hệ vô nghiệm

Nếu m ≠ 1, hệ tương đương

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)

Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)

 

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 10 2019 lúc 13:22

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 7 2018 lúc 12:58

( 2 m   -   1 ) 2   -   4 ( m   +   1 ) ( m   -   2 )   ≥   0  ⇔ 9 ≥ 0. Bất phương trình có tập nghiệm là R.

Bình luận (0)
BT
Xem chi tiết
KB
29 tháng 3 2022 lúc 23:56

Với m = 1/2 thì bpt (1) \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow x=\dfrac{1}{2}\)

bpt(2) \(\sqrt{\sqrt{x-1}+4}-\sqrt{\sqrt{x-1}+1}\ge1\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\sqrt{x-1}+4}\ge1+\sqrt{\sqrt{x-1}+1}\) 

\(\Leftrightarrow\sqrt{x-1}+4\ge1+\sqrt{x-1}+1+2\sqrt{\sqrt{x-1}+1}\)

\(\Leftrightarrow2\ge2\sqrt{\sqrt{x-1}+1}\Leftrightarrow1\ge\sqrt{\sqrt{x-1}+1}\)  \(\Leftrightarrow\sqrt{x-1}+1\le1\Leftrightarrow\sqrt{x-1}\le0\Leftrightarrow x=1\) 

bpt (2) có no x = 1 . Loại A 

Với m khác 1/2 \(x^2-x+m\left(1-m\right)\le0\)

\(\Leftrightarrow x^2-m^2-\left(x-m\right)\le0\)  \(\Leftrightarrow\left(x-m\right)\left(x+m-1\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge m;x\le1-m\\x\le m;x\ge1-m\end{matrix}\right.\)

Vì bpt (1) là hệ quả bpt (2) nên bpt (1) có no x = 1 

Khi đó : \(\left[{}\begin{matrix}1\ge m;1\le1-m\\1\le m;1\ge1-m\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge1\end{matrix}\right.\)

Chọn B 

Bình luận (0)
KS
30 tháng 3 2022 lúc 5:43

Tìm tất cả tham số mm để bất phương trình x2−x+m(1−m)≤0x2-x+m(1-m)≤0 là hệ quả của bất phương trình √√x−1+4−√√x−1+1≥1x-1+4-x-1+1≥1?
A.m=12A.m=12
B.m≤0B.m≤0 hoặc m≥1m≥1
C.m≥1C.m≥1
D.m≤0D.m≤0

 

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 12 2019 lúc 11:58

Chọn D.

Với m = 1 hệ bất phương trình trở thành:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2) Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Vậy tập nghiệm hệ bất phương trình là

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
30 tháng 9 2017 lúc 11:29

Chọn A

Ta có:

Hệ bất phương trình vô nghiệm khi và chỉ khi m-1≤ -3 hay m≤ - 2.

Bình luận (0)