A. f(x) = - x 2 + 5x - 6
B. f(x) = x 2 - 5x + 6
C. f(x) = x 2 + 5x - 6
D. f(x) = - x 2 + 5x + 6
giải giúp em vs ạ
Cho f(x) = 2ax^2-4(bx-1)+5x+c-11 với a b c là các hằng số xác định a b c để F(x)=x^2-5x+6
Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)
\(=2ax^2-4bx+4+5x+c-11\)
\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)
\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)
cho f(x) = 2(x^2-3) - ( x^2 - 3 ) - ( x^2 + 5x ) a, thu gọn f(x) . b , chứng tỏ -1 và 6 là nghiệm của f(x) . bài 2 : Tìm nghiệm của các đa thức . a, A(x) = -4x + 7 . b, B(x) = x^2 + 2x . c, C(x) = 1/2 - căn bậc hai x . d, D(x) = 2x^2 - 5
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
cho đa thức: f(x) = 2(x ^ 2 - 3) - (x ^ 2 5x)
a) Thu gọn đa thức f(x)
b) Chứng minh rằng -1 và 6 là các nghiệm của f(x)
Xét dấu các tam thức bậc hai:
a) f(x)=2x^2 –4x+5 c)f(x)=9x^2 –24x+16 e) f(x)=3x^2 –8x+2
b) f(x)=–x^2 +2x–6 d) f(x)=–4x^2 +4x–1 f)f(x)=–2x^2 +5x–2
Phân tích đa thức thành nhân tử a) x^2 -5x+6 b) 3x^2+9x -30 c)3x^2 -5x-2 d) x^3-7x-6 e) x^4+2x^2+6x-9 f) x^2-7xy+10y^2
Cho đa thức f(x)=x^2 + (a+b)x + ab và g(x)= x^2+5x+6 Xác định a,b để f(x)=g(x)
Giải giúp mình đang cần gấp
Để f(x)=g(x) thì \(\left\{{}\begin{matrix}a+b=5\\ab=6\end{matrix}\right.\Leftrightarrow\left(a,b\right)\in\left\{\left(2;3\right);\left(3;2\right)\right\}\)
Để f(x)=g(x) thì {a+b=5ab=6⇔(a,b)∈{(2;3);(3;2)}.
Cho hàm số y=f(x)=x^2-5x+6
a)Tính f(-1/3);f(1/2);f(0);f(1)
b)Tìm x khi y=0
\(f\left(x\right)=x^2-5x+6\)
a) +) \(f\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}\right)^2-5.\left(-\frac{1}{3}\right)+6=\frac{70}{9}\)
+) \(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2-5.\frac{1}{2}+6=\frac{15}{4}\)
+) \(f\left(0\right)=0^2-5.0+6=6\)
+) \(f\left(1\right)=1^2-5.1+6=2\)
b) \(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
ok
a)(x+3) (x-2) b)(x+6) (2x+1) c)(x-5) (2-x) d)(-x+1) (x-2) e)(-5x-3) (2-x) f)(x+1) (x-2)
a: (x+3)(x-2)
=x^2-2x+3x-6
=x^2+x-6
b: (x+6)(2x+1)
=2x^2+x+12x+6
=2x^2+13x=6
c: (x-5)(2-x)
=-(x-2)(x-5)
=-(x^2-7x+10)
=-x^2+7x-10
d: (-x+1)(x-2)
=-x^2+2x+x-2
=-x^2+3x-2
e: (-5x-3)(2-x)
=(5x+3)(x+2)
=5x^2+10x+3x+6
=5x^2+13x+6
f: (x+1)(x-2)
=x^2-2x+x-2
=x^2-x-2
a) (x+3)(x-2)=x2+3x-2x-6 =x2+x-6
b) (x+6)(2x+1)= 2x2+12x+x+6 = 2x2+13x+6
c) (x-5)(2-x) = -x2+2x+5x-10= -x2+7x-10
d) (-x+1)(x-2)= -x2+x+2x-2= -x2+3x-2
e) (-5x-3)(2-x) = 5x2-10x+3x-6= 5x2-7x-6
f) (x+1)(x-2) = x2-2x+x-2= x2-x-2
5 Cho đa thức f(x)=x^5-4x^4-2x^2-7; g(x)=-2x^5+6x^4-2x^2+6
Tính f(x)+g(x); f(x)-g(x)
b) Cho đa thức f(x)=5x^4+7x^3-6x^2+3x-7 ; g(x)=-4x^4+2x^3-5x^2+4x+5
Tính f(x)+g(x) ; f(x)-g(x)
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)