Tìm x
(4x-5)-3x(5-4x)=0
Tìm x biết
(6-3x)^2-2(3x-6)=0(2x+5)^3-(2x+5)=0(6-4x)^3-(6-4x)=0(5-4x)^2-(4x+5)=0Tìm x
a) (x + 3)2 + (x + 2)(5 – x) = 1
b/ (2x – 1)2 – ( x – 5)( 4x + 3) = 3
c/ 3x (x – 2) + 4x – 8 = 0
d/ 2x (3x + 5) – 18x – 30 = 0
\(a,\Leftrightarrow x^2+6x+9-x^2+3x+10=1\\ \Leftrightarrow9x=-18\Leftrightarrow x=-2\\ b,\Leftrightarrow4x^2-4x+1-4x^2+17x+15=3\\ \Leftrightarrow13x=-13\Leftrightarrow x=-1\\ c,\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=2\end{matrix}\right.\\ d,\Leftrightarrow2x\left(3x+5\right)-6\left(3x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Tìm x biết:
a) (3x + 5)2 - 4x2 = 0
b) 25x4 - (4x - 3)2 = 0
c) (3x + 7)2 - (2x - 3)2 = 0
d) (4x - 1)2 - (5 - 3x)2 = 0
a: Ta có: \(\left(3x+5\right)^2-4x^2=0\)
\(\Leftrightarrow\left(3x+5+2x\right)\left(3x+5-2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
Tìm x
(4x - 3)2 - 3x (3 - 4x) = 0
3x (x - 4) - x (5 + 3x) = -34
(4x - 3)2 - 3x(3 - 4x) = 0
<=> (4x - 3)2 + 3x(4x - 3) = 0
<=> (4x - 3)(4x - 3 + 3x) = 0
<=> (4x - 3)(7x - 3) = 0
<=> x = 3/4 hoặc x = 3/7.
E lm đc mỗi 1 câu :((
\(\left(4x-3\right)^2-3x\left(3-4x\right)=0\)
\(\left(4x-3\right)^2-3x\cdot\left(-1\right)\cdot\left(4x-3\right)=0\)
\(\left(4x-3\right)^2+3x\cdot\left(4x-3\right)=0\)
\(\left(4x-3\right)\left(4x-3+3x\right)=0\)
\(\left(4x-3\right)\left(7x-3\right)=0\)
\(\orbr{\begin{cases}4x-3=0\\7x-3=0\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{3}{7}\end{cases}}\)
\(3x\left(x-4\right)-x\left(5+3x\right)=-34\)
\(3x^2-12x-5x-3x^2+34=0\)
\(-17x+34=0\)
\(x=2\)
( 4x - 3 )2 - 3x( 3 - 4x ) = 0
⇔ ( 4x - 3 )2 + 3x( 4x - 3 ) = 0
⇔ ( 4x - 3 )( 4x - 3 + 3x ) = 0
⇔ ( 4x - 3 )( 7x - 3 ) = 0
⇔ 4x - 3 = 0 hoặc 7x - 3 = 0
⇔ x = 3/4 hoặc x = 3/7
3x( x - 4 ) - x( 5 + 3x ) = -34
⇔ 3x2 - 12x - 5x - 3x2 = -34
⇔ -17x = -34
⇔ x = 2
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
Tìm x biết
1.(x+3)2-(x+2).(x-2)=4x+17
2.(2x+1)2-(4x-1).(x-3)-15=0
3.(2x+3).(x-1)+(2x-3).(1-x)=0
4.2(5x-8)-3(4x-5)=4(3x-4)+11
5.(3x-1).(2x-7)-(1-3x).(6x-5)=0
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
Tìm x:
A/ 5x²(3x-1)-10x³(1-3x) = 0
B/ 9x(x-3)+18x²(3-x) - 81x²(x-3) = 0
C/ (4x-1)(3x-5)-x(4x-1) = 3(1-4x)
D/ 2x²(3x+1)+7(3x+1) = 2x(3x+1)
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0