Những câu hỏi liên quan
LN
Xem chi tiết
VV
Xem chi tiết
NT
19 tháng 7 2021 lúc 22:37

Ta có: \(G=\left(\dfrac{x-\sqrt{x}+2}{x-1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\)

\(=\dfrac{x-\sqrt{x}+2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

Bình luận (0)
DM
Xem chi tiết
AD
23 tháng 7 2021 lúc 20:46

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
LH
1 tháng 8 2019 lúc 16:07

Ôn tập Căn bậc hai. Căn bậc ba

Bình luận (0)
NT
Xem chi tiết
QA
Xem chi tiết
LL
Xem chi tiết
NL
Xem chi tiết
AH
26 tháng 12 2022 lúc 12:54

Bài 1:

1.

$A=(x-2)^2+6x+5=x^2-4x+4+6x+5=x^2+2x+9$

2.

$B=\frac{15x^2y^3}{5x^2y^2}-\frac{10x^3y^2}{5x^2y^2}+\frac{5x^2y^2}{5x^2y^2}$

$=3y-2x+1$

 

Bình luận (0)
AH
26 tháng 12 2022 lúc 13:08

Bài 3:
$f(x)=x+4x^2-5x+3=4x^2-4x+3=4x(x-3)+8(x-3)+27$

$=(x-3)(4x+8)+27=g(x)(4x+8)+27$

Vậy $f(x):g(x)$ có thương là $4x+8$ và dư là $27$

Bình luận (0)
H24
Xem chi tiết
HH
Xem chi tiết