Những câu hỏi liên quan
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:33

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n}.5^{- 1}}}} = 5,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân với \({u_1} = 10\) và công bội \(q = 5\).

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 10 2023 lúc 20:22

loading...  

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2019 lúc 15:17

Đáp án C

Em có:  S = 1. q n − 1 q − 1 = q n − 1 q − 1 .

Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là  1 q .

Gọi S' là tổng mới của cấp số nhân mới.

Em có:  S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .

Vậy tổng của cấp số nhân mới là:  S q n − 1 .

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 12 2018 lúc 3:35

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2017 lúc 17:17

Chọn  C

Theo đề bài ta có:

Cộng vế với vế các phương trình của hệ ta được:

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 6 2017 lúc 13:39

Bình luận (0)
NA
Xem chi tiết
NL
16 tháng 12 2020 lúc 7:20

Câu 1:

Dãy đã cho có thể viết dưới dạng công thức truy hồi sau:

\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+7n\end{matrix}\right.\)

\(u_{n+1}=u_n+7n\Leftrightarrow u_{n+1}-\dfrac{7}{2}\left(n+1\right)^2+\dfrac{7}{2}\left(n+1\right)=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\)

Đặt \(v_n=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)

\(\Rightarrow u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n=1\)

\(\Leftrightarrow u_n=\dfrac{7}{2}n^2-\dfrac{7}{2}n+1\)

\(\dfrac{7}{2}n^2-\dfrac{7}{2}n+1=35351\)

\(\Leftrightarrow\dfrac{7}{2}n^2-\dfrac{7}{2}n-35350=0\)

\(\Rightarrow n=101\)

Vậy đó là số hạng thứ 101

Bình luận (0)
NL
16 tháng 12 2020 lúc 7:24

2.

Do a;b;c lập thành 1 cấp số cộng

\(\Rightarrow a+c=2b\)

\(\Leftrightarrow2R.sinA+2R.sinC=2.2R.sinB\)

\(\Leftrightarrow sinA+sinC=2sinB\)

\(\Leftrightarrow2sin\dfrac{A+C}{2}.cos\dfrac{A-C}{2}=4sin\dfrac{B}{2}cos\dfrac{B}{2}\)

\(\Leftrightarrow cos\dfrac{B}{2}cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}cos\dfrac{B}{2}\)

\(\Leftrightarrow cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}=2cos\dfrac{A+C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)+sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)=2cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)-2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)\)

\(\Leftrightarrow cos\left(\dfrac{A}{2}\right).cos\left(\dfrac{C}{2}\right)=3sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)\)

\(\Leftrightarrow cot\left(\dfrac{A}{2}\right).cot\left(\dfrac{C}{2}\right)=3\)

Bình luận (0)
NL
16 tháng 12 2020 lúc 7:30

3.

Công thức số hạng tổng quát của dãy đầu: \(u_n=4+3\left(n-1\right)=3n+1\)

Với \(1\le n\le100\)

Công thức số hạng tổng quát của dãy sau: \(v_m=1+5\left(m-1\right)=5m-4\)

Với \(1\le m\le100\)

Các số hạng của 2 dãy trùng nhau khi:

\(3n+1=5m-4\)

\(\Leftrightarrow5m=3n+5\Leftrightarrow m=\dfrac{3n}{5}+1\)

\(\Rightarrow n⋮5\Rightarrow n=5k\)

Mà \(1\le n\le100\Rightarrow1\le5k\le100\Rightarrow1\le k\le20\)

\(\Rightarrow\) Hai dãy số có 20 số hạng trùng nhau

Vậy số số có mặt trong 2 dãy trên là: \(100+100-20=180\) số

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 11 2017 lúc 12:36

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 12 2017 lúc 8:42

a) Năm số hạng đầu là Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Lập tỉ số

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo công thứcđịnh nghĩa ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy, dãy số ( v n ) là cấp số nhân, có v 1   =   1 / 3 ,   q   =   1 / 3

c) Để tính ( u n ) , ta viết tích của n - 1 tỉ số bằng 1/3

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận (0)