Tính giá trị của biểu thức , biết là nghiệm của phương trình.
A. Q=16
B. Q=4
C. Q=7
D. Q=21
Biết rằng phương trình: \(x^2+px+1=0\)có hai nghiệm là a,b và phương trình \(x^2+qx+2=0\)có hai nghiệm là b,c. Hãy tính giá trị của biểu thức \(A=p.q-\left(b-a\right).\left(b-c\right)\)
mình 0 bt nhng ai chat nhìu thì kt bn với mình nha
Cho phương trình x2 + 5x − 4 = 0 . Gọi 1 2 x ; x là hai nghiệm của phương trình. Không
giải phương trinh, hăy tính giá trị biểu thức 2 2
1 2 1 2 Q = x + x + 6x x .
Biết rằng phương trình \(x^2+px+1\) có 2 nghiệm là a,b và phương trình \(x^2+qx+2\) có 2 nghiệm là b,c. Tính giá trị của biểu thức A = pq - (b-a) (b-c)
Tính giá trị của biểu thức Q = A x 3 18 - x P x , biết x là nghiệm của phương trình C 2 x x + 1 C 2 x + 1 x - 1 = 2 3
A. Q=16
B. Q=4
C. Q=7
D. Q=21
Biết rằng Q = x 2 - 6 x + 9 x 2 - 9 = x - 3 2 x - 3 x + 3 = x - 3 x + 3
Hãy tính giá trị của biểu thức Q. Câu trả lời nào sau đây là sai ?
A. Giá trị của Q tại x = 4 là (4 - 3)/(4 + 3) = 1/7
B. Giá trị của Q tại x = 1 là (1 - 3)/(1 + 3) = (-1)/2
C. Giá trị của Q tại x = 3 là (3 - 3)/(3 + 3) = 0
D. Giá trị của Q tại x = 3 không xác định.
Chọn đáp án C
Giá trị của biểu thức Q = x 2 - 6 x + 9 x 2 - 9 = x - 3 2 x - 3 x + 3 = x - 3 x + 3
Giá trị của Q tại x = 3 là (3-3)/(3+3) = 0 sai vì x = 3 phân thức đã cho không xác định.
Câu 1 :Cho phương trình : \(\left(2x-3\right)^2=5\). Tính giá trị của biểu thức : A=\(\frac{2x^2}{x^4-3x^3-3x+1}\)
Câu 2: Cho phương trình :\(\frac{a+3}{x+1}-\frac{5-3a}{x-2}=\frac{ax+3}{x^2-x-2}\). Với giá trị nào của a thì phương trình có nghiệm dương không lớn hơn 1.
Câu 3 : Đa thức P(x) là đa thức bậc 4 và có hệ số cao nhất là 2 . biết P(1)=0 ; P(3)=0 ; P(5)=0 . háy tính giá trị của biểu thức : Q=P(-2)+7P(6)
:<< ai giúp với ạ
gọi x0 là nghiệm của phương trình 3x - 10 = 0. tính giá trị của biểu thức Q = 3x0 -2
\(x_0=\dfrac{10}{3}\)
\(\Leftrightarrow Q=3\cdot\dfrac{10}{3}-2=10-2=8\)
Cho phương trình x2 + 5x − 4 = 0 . Gọi x1 ; x2 là hai nghiệm của phương trình. Không giải phương trinh, hăy tính giá trị biểu thức
Q = x12 + x22 + 6x1 x 2.
Q=(x1+x2)^2-2x1x2+6x1x2
=(-5)^2+4*(-4)
=25-16=9
Áp dụng Viét có: `{(x_1+x_2=-b/a=-5),(x_1.x_2=c/a=-4):}`
Ta có: `Q=(x_1+x_2)^2+4x_1.x_2`
`<=>Q=(-5)^2+4.(-4)`
`<=>Q=9`
Gọi a là nghiệm dương của phương trình : \(\sqrt{2}x^2+x-1=0\). Không giải phương trình, hãy tính giá trị của biểu thức :
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
ta có :
\(\sqrt{2}a^2+a-1=0\Leftrightarrow\sqrt{2}a^2=1-a\) nên ta có \(a\le1\)
\(\Rightarrow2a^4=a^2-2a+1\)Vậy \(C=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{2a^2+\sqrt{2}\left(2-a\right)}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a+2\right)}\)
\(=\frac{2a-3}{\sqrt{2}\left(1-a-a+2\right)}=\frac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\frac{1}{\sqrt{2}}\)
Tính giá trị của biểu thức \(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
trong đó a là nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\)
Sử dụng delta thôi!
Xét \(4x^2+\sqrt{2}x-\sqrt{2}=0\) có \(4\cdot\left(-\sqrt{2}\right)=-4\sqrt{2}< 0\) nên PT có 2 nghiệm phân biệt
Mà a là nghiệm nguyên dương của PT nên ta có: \(4a^2+\sqrt{2}a-\sqrt{2}=0\)
Vì a > 0 \(\Rightarrow4a^2=-\sqrt{2}a+\sqrt{2}\)
\(\Rightarrow a^2=\frac{\sqrt{2}-\sqrt{2}a}{4}=\frac{\left(1-a\right)\sqrt{2}}{4}=\frac{1-a}{2\sqrt{2}}\)
\(\Rightarrow a^4=\left(\frac{1-a}{2\sqrt{2}}\right)^2=\frac{1-2a+a^2}{8}\)
Thay vào ta được:
\(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{\left(\sqrt{a^4+a+1}\right)^2-a^4}\)
\(=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a^4+a+1-a^4}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a+1}=\sqrt{a^4+a+1}+a^2\)
\(=\sqrt{\frac{1-2a+a^2}{8}+a+1}+\frac{1-a}{2\sqrt{2}}=\sqrt{\frac{a^2+6a+9}{8}}+\frac{1-a}{2\sqrt{2}}\)
\(=\frac{a+3}{2\sqrt{2}}+\frac{1-a}{2\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Vậy \(B=\sqrt{2}\)