Phương trình 2 cos 2 x + cosx -3 =0 có nghiệm là:
A. k π
B. π 2 + k 2 π
C. π 2 + k π
D.k2 π
\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)
\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)
\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)
\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)
Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:
\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)
Trong các khoảng sau, m thuộc khoảng nào để phương trình sin^2 x-(2m+1) sin x.cos x + 2m cos^2 x = 0 có nghiệm thuộc khoảng (π/4 ; π/3)?
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Phương trình cos x = 3 2 có nghiệm thỏa mãn 0 ≤ x ≤ π là:
A. x = π 3 + k 2 π
B. x = π 6 + k 2 π
C. x = π 3
D. x = π 6
Đáp án D
Ta có: ⇔ c o s x = 3 2 ⇔ x = ± π 6 + k 2 π , k ∈ ℤ . Vì 0 ≤ x ≤ π nên x = π 6 .
Phương trình cosx = 3 2 có nghiệm thỏa mãn 0 ≤ x ≤ π là:
Số nghiệm thuộc 0 ; π của phương trình sinx+ 1 + cos x =2( cos 2 3 x + 1 ) là:
A. 1.
B. 2.
C. 3.
D. 4
Cho phương trình: cosx + sin4x - cos3x =0. Phương trình trên có bao nhiêu họ nghiệm x = a+k2 π
A. 2
B. 6
C. 3
D. 5
Đáp án B
Nghiệm thứ nhất có 4 họ nghiệm , nhưng có 1 nghiệm trùng với nghiệm thứ 2, như vậy
có tất cả 6 họ nghiệm thỏa mãn đề bài
Phương trình cos 2 x + cos x = 0 có bao nhiêu nghiệm thuộc khoảng − π ; π
A. 1
B. 4
C. 2
D. 3
Đáp án C.
Phương pháp
Sử dụng tính chất hai góc bù nhau cos x = cos π − x
Giải phương trình lượng giác cơ bản
Cách giải
Vậy phương trình có 2 nghiệm thuộc − π ; π
Tìm nghiệm của các phương trình sau trong khoảng đã cho
a) sin2x = -\(\frac{1}{2}\) với 0<x<π ;
b) cos(x-5) = \(\frac{\sqrt{3}}{2}\) với -π< x < π.