Những câu hỏi liên quan
NA
Xem chi tiết
HN
4 tháng 12 2017 lúc 11:19

a/ Đặt \(x^{10}=a\) ta có:

\(A=a^{197}+a^{193}+a^{198}\)

\(=a^{193}\left(a^4+1+a^5\right)\)

\(=a^{193}\left[\left(a^5+a^4+a^3\right)-\left(a^3+a^2+a\right)+\left(a^2+a+1\right)\right]\)

\(=a^{193}\left(a^2+a+1\right)\left(a^3-a+1\right)⋮\left(a^2+a+1\right)\)

Vậy có ĐPCM

Bình luận (0)
HN
4 tháng 12 2017 lúc 11:22

b/ \(B=7.5^{2n}+12.6^n=\left(7.25^n-7.6^n\right)+19.6^n\)

\(=7\left(25-6\right)G\left(n\right)+19.6^n=7.19.G\left(n\right)+19.6^n⋮19\)

Bình luận (1)
BQ
Xem chi tiết
VK
26 tháng 1 2018 lúc 21:06

Ta có : 1890 chia hết cho 7 

1945+1=1946 chia hết cho 7 

1946+1890=3836 chia hết cho 7 

số mũ = a x a x a x ..... 

mà bất cư số nào chia hết cho 7 nhân v bao nhiều cũng chia hết cho 7 

=> dpcm 

Bình luận (0)
NL
Xem chi tiết
NB
11 tháng 10 2017 lúc 11:20

91945-21930=91945-4965=(...9)-(..4)=(...5) chia hết cho 5

Bình luận (0)
PL
Xem chi tiết
DH
1 tháng 9 2019 lúc 21:28

1) a, Chứng minh a^5-a chia hết cho 5

b, Chứng minh a^7-a chia hết cho 7

Bình luận (0)
DH
1 tháng 9 2019 lúc 21:26

a, aa5−a=a(a4−1)=a(a2+1)(a2−1)

=a(a−1)(a+1)(a2+1)

=a(a−1)(a+1)(a2−4+5)=a(a−1)(a+1)(a2−4)+5a(a−1)(a+1)

Bình luận (5)
NH
Xem chi tiết
KP
Xem chi tiết
AH
12 tháng 11 2018 lúc 17:37

Phần a)

Sử dụng bổ đề \(x^{mn}-1\vdots x^m-1\) với mọi \(m,n \in\mathbb{N}\)

Chứng minh bổ đề:

Thật vậy, theo hằng đẳng thức đáng nhớ:

\(x^{mn}-1=(x^m)^n-1^n=(x^m-1)[(x^m)^{n-1}+(x^m)^{n-2}+...+x^m+1]\vdots x^m-1\)

Bổ đề đc chứng minh.

-----------------------------------

Ta có:

\(x^{400}+x^{200}+1=x^{396}.x^4+x^{198}.x^2+1\)

\(=x^4(x^{396}-1)+x^2(x^{198}-1)+(x^4+x^2+1)\)

Áp dụng bổ đề trên vào bài toán kết hợp với \(x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1\) ta suy ra:

\(x^{396}-1=x^{6.66}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^{198}-1=x^{6.33}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^4+x^2+1\vdots x^4+x^2+1\) (hiển nhiên)

Do đó: \(x^{400}+x^{200}+1\vdots x^4+x^2+1\)

(đpcm)

Bình luận (0)
AH
12 tháng 11 2018 lúc 17:48

Phần b)

\(F(x)=x^{1970}+x^{1930}+x^{1890}=x^{1890}(x^{80}+x^{40}+1)\)

Thấy rằng:

\(x^{80}+x^{40}+1=(x^{40}+1)^2-x^{40}=(x^{40}+1)^2-(x^{20})^2\)

\(=(x^{40}+1-x^{20})(x^{40}+1+x^{20})\)

Mà: \(x^{40}+1+x^{20}=(x^{20}+1)^2-x^{20}=(x^{20}+1)^2-(x^{10})^2\)

\(=(x^{20}+1-x^{10})(x^{20}+1+x^{10})\vdots x^{20}+x^{10}+1\)

Do đó:

\(x^{80}+x^{40}+1\vdots x^{20}+x^{10}+1\)

Bình luận (0)
NU
Xem chi tiết
NQ
1 tháng 2 2018 lúc 13:29

Có : 1890 chia hết cho 7 => 1890^1930 chia hết cho 7

Áp dụng tính chất a^n + b^n chia hết cho a+b với mọi n lẻ và a,b thuộc N thì :

1945^1975 + 1 = 1945^1975 + 1^1975 chia hết cho 1945+1 = 1946

Mà 1946 chia hết cho 7 => 1945^1975+1 chia hết cho 7

=> a chia hết cho 7

Tk mk nha

Bình luận (0)
KG
Xem chi tiết
PM
14 tháng 1 2017 lúc 19:54

biết 1890 chia hết cho 7

1945+1 =1946 chia hết cho 7

1946+1890=3836 cũng chia hết cho 7

số mũ =a x a x a x.......

mà bất cứ số nào chia hết cho 7 nhân với bao nhiêu cũng chia hết cho 7 vậy suy ra 18901930+19451975+1 chia hết cho 7

Bình luận (0)
NL
Xem chi tiết
NH
7 tháng 10 2016 lúc 21:15

sao mà tính

Bình luận (0)
CN
21 tháng 4 2019 lúc 9:58

a.

Ta có :

A=999993^{1999}-555557^{1997}A=9999931999−5555571997

=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557

=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557

=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557

=\left(....7\right)-\left(....7\right)=(....7)−(....7)

=\left(....0\right)⋮5=(....0)⋮5

\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)

Bình luận (0)
AN
Xem chi tiết
VT
10 tháng 10 2019 lúc 21:40

Bài 2:

a) \(9^{1945}-2^{1930}\)

Ta có:

\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)

\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)

\(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)