Giả sử ∫ 1 5 d x 2 x - 1 = ln K . Giá trị của K là:
A. 9
B. 3
C. 81
D. 8
Giả sử a * b = 3a - b. Hỏi x bằng bao nhiêu nếu: 2 * (5 * x ) = 1?
Ta có 2*(5*x) = 1
<=> 3.2 - (5*x) = 1
<=> 6 - (3.5 - x) = 1
<=> 6 - (15-x) = 1
<=> 6 - 15 + x = 1
<=> (-9) + x = 1
<=> x = 10
giả sử a,b là nghiệm của phương trình \(x^2+px+1=0\)
giả sử c,d là nghiệm của phương trình \(x^2+qx+1=0\)
chứng minh hệ thức: (a-c)(a+d)(b+d)=\(q^2-p^2\)
Giả sử f(x) chia x+1 dư 5 khi chia cho x-2 dư 7. Hỏi khi chia f(x) cho (x+1)(x-2) thì dư bao nhiêu?
Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\) (1)
Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\) (2)
Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\) (Với g(x) , h(x), t(x) là các đa thức)
Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)
Theo (1) thì b - a = 5.
Ta cũng có :
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)
Theo (2) thì b + 2a = 7.
Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)
Cho đường thẳng (d) : y = 2x - 3m + 5 và (P) : y = x2
b) Giả sử ( d) và (P) cắt nhau tại 2 điểm phân biệt có hoành độ giao điểm lần lượt là x1 , x2 . Tim giá trị của m thỏa mãn : x12 + x22 = x1x2 + 2
m thõa mãn khi m= 17/9
Phương trình hoành độ giao điểm:
x2=2x−3m+5
⇔x2−2x+3m−5=0
(P) cắt (d) tại 2 điểm phân biệt khi (*) có Δ′>0Δ′>0
⇔1−3m+5>0
⇔m<2
⇒x1+x2=2;x1.x2=3m−5
x21+x22=x1.x2+2
⇔(x1+x2)2−3x1.x2=2
⇔22−3(3m−5)=2
⇔m=179
c7:Cho biêu thức A=x+2 phần y-1 và B 4x(x+5) phần y+2
a) giả sử biết y=2 giải pt ẩn x A+3=B
b) Giả sử đẫ biết x=-3 giải pt ẩn y A-B =13
Giả sử x,y,z là những số thực dương thỏa mãn : 1/x+1/y+1/z=2.
Chứng minh rằng
√(x+1)+√(y+1)+√(z+1)≤√[5(x+y+z)].
\(VT=\sqrt{\left(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\right)^2}\)
\(\le\sqrt{3\left(x+y+z+3\right)}=\sqrt{\left[9-2\left(x+y+z\right)\right]+5\left(x+y+z\right)}\)
\(=\sqrt{\left[9-\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+5\left(x+y+z\right)}\le\sqrt{5\left(x+y+z\right)}=VP\)
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)
Theo giả thiết \(2=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\Rightarrow x+y+z\ge\frac{9}{2}\)
\(\Rightarrow\frac{2}{3}\left(x+y+z\right)\ge3\)
\(VT=\sqrt{\left(\Sigma_{cyc}\frac{\sqrt{x+1}}{\sqrt{5\left(x+y+z\right)}}.\sqrt{5\left(x+y+z\right)}\right)^2}\le\sqrt{15\left(x+y+z\right)\left[\Sigma_{cyc}\frac{x+1}{5\left(x+y+z\right)}\right]}\)
\(=\sqrt{3\left(x+y+z+3\right)}\le\sqrt{3\left(x+y+z+\frac{2}{3}\left(x+y+z\right)\right)}=\sqrt{5\left(x+y+z\right)}=VP\)
C3: Giả sử các biểu thức đều có nghĩa. Với giá trị nào của a thì hai phân thức x/x+1 và ax^2-ax/x^2-1 bằng nhau:
A. -1 B. 1 C. 2 D.3
C5: Hàm số nào sau đây là hàm số bậc nhất
A. y=2x-1 B.y=2 C.y=x^2+x+1 D. y=2/x
C6: Đồ thị hàm số y=x+2 đi qua điểm có tọa độ nào sau đây
A. (0;-2) B.(1;3) C.(-1;0) D.(0;0)
C8: Giá trị m để đường thẳng y=(m-1)x+3 với ( m khác 1) song song với đường thẳng y=x là ?
A. m=0 B. m=1 C. m=2 D.không có giá trị của m
C9: Tổng số cạnh bên và cạnh đáy của hình chóp tam giác đều là
A.4 B.6 C.8 D.10
C10 S xung quanh hình chóp đều =?
A,tích nửa chu vi đáy và đường cao của hình chóp
B. Tích nửa chu vi đáy và độ dài trung đoạn
C. Tích chu vi đáy và độ dài trung đoạn
D. Tổng chu vi đáy và trung đoạn
C11 : Tứ giác ABCD có C=50 độ ; D=60 độ; A:B=3:2. Số đo B bằng?
A 50 độ B.100 độ C.150 độ D.200 độ
C12 :phát biểu nào sau đây là sai?
A. tứ giác có 4 cạnh =nhau và 4 góc = nhau là hình vuông
B. tứ giác có 2 dường chéo bằng nhau là hình bình hành
C. tứ giác có 4 cạnh bằng nhau là hình thoi
D. Tứ giác có 4 góc = nhau là hình chữ nhật
Câu 3: B
Câu 5: A
Câu 6: B
Câu 8: C
Câu 9: B
Câu 10:B
Câu 11: B
Câu 12: B
Đề là \(m\ne-\dfrac{1}{2}\) chứ.
\(x=0\Rightarrow y=-2\Rightarrow OB=2\)
\(y=0\Rightarrow x=\dfrac{2}{2m+1}\Rightarrow OA=\left|\dfrac{2}{2m+1}\right|\)
\(S_{\Delta OAB}=\dfrac{1}{2}.2.\left|\dfrac{2}{2m+1}\right|=\left|\dfrac{2}{2m+1}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left|2m+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)
cho đường thẳng d: y= ( 2m+1)x-2 với m khác -1/2 giả sử d cắt ox tại a cắt oy tại B. tìm m để diện tích tam giác OAB bằng 1/2
Theo đề bài: \(\left\{{}\begin{matrix}A\in Ox\\B\in Oy\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A\left(x_A;0\right)\\B\left(0;y_B\right)\end{matrix}\right.\).
Thay vào phương trình đường thẳng \(\left(d\right)\) ta được:
\(\left\{{}\begin{matrix}0=\left(2m+1\right)x_A-2\\y_B=\left(2m+1\right)\cdot0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A=\dfrac{2}{2m+1}\\y_B=-2\end{matrix}\right.\).
Do đó: \(\left\{{}\begin{matrix}OA=\left|x_A\right|=\dfrac{2}{\left|2m+1\right|}\\OB=\left|y_B\right|=\left|-2\right|=2\end{matrix}\right.\)
\(\Delta OAB\left(\hat{O}=90^o\right)\) có: \(S=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\)
\(\Leftrightarrow OA\cdot OB=1\)
\(\Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\left(TM\right)\\m=-\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\).
Giả sử hàm số y= f(x) cho bởi công thức:y=5/x-1
a)Tính f(-2); f(0); f(2); f(1/3)
b)tìm các giá trị của x để y =-1 ;y=1 ;y=1/5