Chương II - Hàm số bậc nhất

HD

cho đường thẳng d: y= ( 2m+1)x-2 với m khác -1/2 giả sử d cắt ox tại a cắt oy tại B. tìm m để diện tích tam giác OAB bằng 1/2

TM
23 tháng 9 2023 lúc 10:08

Theo đề bài: \(\left\{{}\begin{matrix}A\in Ox\\B\in Oy\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A\left(x_A;0\right)\\B\left(0;y_B\right)\end{matrix}\right.\).

Thay vào phương trình đường thẳng \(\left(d\right)\) ta được:

\(\left\{{}\begin{matrix}0=\left(2m+1\right)x_A-2\\y_B=\left(2m+1\right)\cdot0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A=\dfrac{2}{2m+1}\\y_B=-2\end{matrix}\right.\).

Do đó: \(\left\{{}\begin{matrix}OA=\left|x_A\right|=\dfrac{2}{\left|2m+1\right|}\\OB=\left|y_B\right|=\left|-2\right|=2\end{matrix}\right.\)

\(\Delta OAB\left(\hat{O}=90^o\right)\) có: \(S=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\)

\(\Leftrightarrow OA\cdot OB=1\)

\(\Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\)

\(\Rightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\left(TM\right)\\m=-\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\).

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
N2
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
GH
Xem chi tiết
H24
Xem chi tiết