Những câu hỏi liên quan
NV
Xem chi tiết
AH
27 tháng 11 2021 lúc 9:56

Lời giải:

ĐKXĐ: $x\leq 3$
$(x-4)(\sqrt{3-x}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ \sqrt{3-x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4(\text{loại do 4>3})\\ x=2(tm)\end{matrix}\right.\)

Vậy số nghiệm thực của pt là $1$

Đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 10 2018 lúc 11:57

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 5 2017 lúc 12:45

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 10 2017 lúc 17:07

Đáp án B.

PT: cos   x   = 1 2  có 2 nghiệm thuộc trên đoạn 0 ; 2 π  do đó để PT đã cho có 4 nghiệm thực thuộc đoạn 0 ; 2 π  thì

TH1: m= cosx có 1 nghiệm thuộc đoạn 0 ; 2 π

 

TH2: m= cosx có 2 nghiệm thuộc đoạn 0 ; 2 π trong đó có 1 nghiệm trùng

 

Vậy m= -1; m=0.

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 7 2019 lúc 2:50

Chọn C.

Ta có

   

Giả sử x0  là nghiệm của phương trình  ex - e-x = 2 cosax  (*), thì x0 ≠ 0  và 2x0 là nghiệm của (1) và -2x0  là nghiệm của (2) hoặc ngược lại

Phương trình (*) có 5 nghiệm nên hai phương trình (1), (2) có 5 nghiệm phân biệt.

Vậy phương trình ex - e-x = 2 cosax  + 4  có 10 nghiệm phân biệt.

Bình luận (0)
H24
Xem chi tiết
NM
17 tháng 10 2021 lúc 14:46

\(\Leftrightarrow x^4-x^3+x^3-x^2-8x^2+8x+16x-16=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+4x^2-3x^2-12x+4x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x^2-3x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\\\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\left(vô.n_o\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Bình luận (0)
KL
Xem chi tiết
NT
18 tháng 5 2021 lúc 19:10

Bài 2 : 

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=4\Rightarrow x_1^2+x_2^2=4+8=12\)

Ta có : \(T=x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)\)

\(=x_1^2-2x_2x_1+x_2^2-2x_1x_2=12+16=28\)

Bình luận (0)
 Khách vãng lai đã xóa
GB
Xem chi tiết
RH
4 tháng 2 2024 lúc 22:53

Đặt \(t=2^x>0\).

Phương trình ban đầu trở thành: \(t^2-2t+m=0\) (*)

Để phương trình ban đầu có 2 nghiệm phân biệt thì (*) phải có 2 nghiệm phân biệt dương: \(\left\{{}\begin{matrix}\Delta'>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m>0\\2>0\left(đúng\right)\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

Bình luận (0)
H24
Xem chi tiết
NL
9 tháng 1 2023 lúc 20:00

Em kiểm tra lại đề bài, pt này chắc chắn là ko giải được

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 10 2019 lúc 15:43

Bình luận (0)