Những câu hỏi liên quan
KR
Xem chi tiết
HP
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 11 2019 lúc 14:03

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 7 2018 lúc 17:02

 

Chọn C.

 

 

Phương pháp: Biện luận theo m.

 

 

Bình luận (0)
TD
Xem chi tiết
TM
Xem chi tiết
PB
Xem chi tiết
CT
16 tháng 10 2018 lúc 9:46

Bình luận (0)
ND
Xem chi tiết
ML
Xem chi tiết
NL
23 tháng 8 2021 lúc 16:42

\(y'=-6x^2+2\left(2m-1\right)x-\left(m^2-1\right)\)

Hàm có 2 cực trị khi:

\(\Delta'=\left(2m-1\right)^2-6\left(m^2-1\right)>0\)

\(\Rightarrow-2m^2-4m+7>0\)

\(\Rightarrow-\dfrac{2+3\sqrt{2}}{2}< m< \dfrac{-2+3\sqrt{2}}{2}\)

\(\Rightarrow m=\left\{-3;-2;-1;0;1\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 5 2017 lúc 8:26

Đáp án A

Giả sử giá trị lớn nhất của hàm số là M. Khi đó

 

  

có nghiệm

 

xét  

 

Suy ra  có 2 nghiệm phân biệt

  

Ta có

 

suy ra  

Yêu cầu bài toán

Bình luận (0)