Những câu hỏi liên quan
AN
Xem chi tiết
LT
21 tháng 2 2021 lúc 17:04

Giải:

Tập xác định của phương trình

Tập xác định của phương trình

Biến đổi vế trái của phương trình

Biến đổi vế phải của phương trình

Phương trình thu được sau khi biến đổi

Biến đổi vế trái của phương trình

Phương trình thu được sau khi biến đổi

Đơn giản biểu thức

Giải phương trình

thu được x=2
Bình luận (0)
NL
21 tháng 2 2021 lúc 19:53

\(\Leftrightarrow\sqrt{\left(\sqrt{x+7}-1\right)^2}+\sqrt{x+1-\sqrt{x+7}}=2\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+7\ge0\\x+1-\sqrt{x+7}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-7\\x\ge-1\\\left(x+1\right)^2\ge x+7\end{matrix}\right.\) \(\Leftrightarrow x\ge2\)

Khi đó pt tương đương:

\(\left|\sqrt{x+7}-1\right|+\sqrt{x+1-\sqrt{x+7}}=2\)

\(\Leftrightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}=3\)

Do \(x\ge2\Rightarrow\left\{{}\begin{matrix}\sqrt{x+7}\ge\sqrt{2+7}=3\\\sqrt{x+1-\sqrt{x+7}}\ge0\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}\ge3\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+1-\sqrt{x+7}}=0\end{matrix}\right.\) \(\Leftrightarrow x=2\)

Pt có đúng 1 nghiệm

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 2 2018 lúc 3:40

Đáp án cần chọn: A

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 2 2018 lúc 17:21

Làm hai vế của bất phương trình đầu vô nghĩa nên x = -7 không là nghiệm của bất phương trình đó. Mặt khác, x = -7 thỏa mãn bất phương trình sau nên x = -7 là nghiệm của bất phương trình này.

    Nhận xét: Phép giản ước số hạng  - 1 x + 7  ở hai vế của bất phương trình đầu làm mở rộng tập xác định của bất phương trình đó, vì vậy có thể dẫn đến nghiệm ngoại lai.

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 12 2017 lúc 2:54

Tại x = 2 ta có:

Vế trái = 2(2 + 2) – 7 = 2.4 – 7 = 8 – 7 = 1

Vế phải = 3 – x = 3 – 2 = 1

⇒ vế trái = vế phải = 1 nên x = 2 có là một nghiệm của phương trình

Bình luận (0)
TD
Xem chi tiết
NT
12 tháng 5 2021 lúc 16:54

a, Do  \(x=-4\)là một nghiệm của pt trên nên 

Thay \(x=-4\)vào pt trên pt có dạng : 

\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)

Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)

\(\Delta=9-4.\left(-28\right)=9+112=121>0\)

vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)

b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
13 tháng 5 2021 lúc 16:52

Vậy m=3, và ngiệm còn lại x2=7

Bình luận (0)
 Khách vãng lai đã xóa
NH
13 tháng 5 2021 lúc 20:49

a)

m = 3

x2=7

 

Bình luận (0)
 Khách vãng lai đã xóa
TO
Xem chi tiết
CT
Xem chi tiết
NA
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Bình luận (0)
 Khách vãng lai đã xóa
PT
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
H24
11 tháng 1 2023 lúc 13:20

`B4:`

`a)` Thay `x=3` vào ptr:

  `3^3-3^2-9.3-9m=0<=>m=-1`

`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`

        `<=>x^2(x-1)-9(x-1)=0`

        `<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`

`B5:`

`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`

    `<=>-8+2m^2-2m+14-3m^2+3m+6=0`

   `<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`

`b)`

`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`

      `<=>x^3-19x-30=0`

      `<=>x^3-5x^2+5x^2-25x+6x-30=0`

      `<=>(x-5)(x^2+5x+6)=0`

      `<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`

`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`

   `<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`

Bình luận (0)
LH
Xem chi tiết
AH
15 tháng 3 2021 lúc 14:42

Lời giải:

a) Khi $m=1$ thì pt trở thành:

$x^2-2x-5=0$

$\Leftrightarrow (x-1)^2=6$

$\Rightarrow x=1\pm \sqrt{6}$ 

b) Để $x_1=3$ là nghiệm của pt thì:

$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$

Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$

c) 

$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$

Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$

Khi đó: 

Để $x_1^2+x_2^2=13$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$

$\Leftrightarrow (2m)^2-2(2m-7)=13$

$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$

d) 

$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$

$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$

 

Bình luận (0)
BT
Xem chi tiết