CHung minh: \(\sqrt{1903\sqrt{1904\sqrt{1905\sqrt{...\sqrt{2501}}}}}<1904\)
Chứng minh rằng \(\sqrt{1903\sqrt{1904}\sqrt{1905}...\sqrt{2501}}< 1904\)
CMR
\(\sqrt{1903\sqrt{1904\sqrt{1905\sqrt{...\sqrt{2501}}}}}< 1904\)
CMR
\(\sqrt{1903\sqrt{1904\sqrt{1905\sqrt{...\sqrt{2501}}}}}< 1904\)
Chung minh √1903√1904√1905√...√2501<1904
cmr: \(\sqrt{1993\sqrt{1994\sqrt{1995\sqrt{....\sqrt{2501}}}}}<1994\)
tui ko bít làm
mới hok lớp 7 làm được chết liền
chung minh
\(\sqrt{2021}-\sqrt{2020}\) va \(\sqrt{2021}+\sqrt{2020}\) la so nghich dao cua nhau
\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\) là nghịch đảo của \(\sqrt{2021}+\sqrt{2020}\) (đpcm)
\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)
\(=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\)(đpcm)
chung minh : \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}=0\)
nhân 2 vế pt cho \(\sqrt{2}\)ta có
\(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2=0\\\left(=\right)\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}-2=0\)
\(\left(=\right)\left|\sqrt{7}+1\right|-\left|\sqrt{7}-1\right|-2=0\\ \left(=\right)\sqrt{7}-1-\sqrt{7}+1-2=0\)
(=) 0=0 ( hiển nhiên đúng)
vậy ghi lại đề
#Học-tốt
Cho x=\(\dfrac{\sqrt{2}-\sqrt{1}}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+...+\dfrac{\sqrt{100}-\sqrt{99}}{99+100}\)
chung minh x<\(\dfrac{1}{2}\)
Lời giải:
Xét số hạng tổng quát:
\(\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}}=\frac{1}{2}(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})\) theo BĐT Cô-si.
Do đó:
\(x< \frac{1}{2}\left[\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right]=\frac{1}{2}(1-\frac{1}{\sqrt{100}})< \frac{1}{2}\)
Ta có đpcm.
Chung minh :\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}>\sqrt{99}\)
Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..........+\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{99}}+.......+\frac{1}{\sqrt{99}}\) (99 số \(\frac{1}{\sqrt{99}}\))
\(=\frac{99}{\sqrt{99}}=\frac{\left(\sqrt{99}\right)^2}{\sqrt{99}}=\sqrt{99}\)
\(\Rightarrowđpcm\)