Những câu hỏi liên quan
PB
Xem chi tiết
CT
16 tháng 5 2019 lúc 13:43

a) Điều kiện : 3x2 – 12x ≠ 0; 3x3 – 12x = 3x(x2 – 4) = 3x(x – 2)(x + 2).

Vậy: x ≠ 0; x ≠ 2 và x ≠ -2.

Bình luận (0)
NB
Xem chi tiết
LP
15 tháng 8 2023 lúc 19:28

đkxđ: 

\(x^2-4x+3\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)

Vậy đkxđ của biểu thức là \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)

Bình luận (0)
DC
15 tháng 8 2023 lúc 19:31

đkxđ: 

�2−4�+3≥0

⇔(�−1)(�−3)≥0

⇔[{�−1≥0�−3≥0{�−1≤0�−3≤0

⇔[�≥3�≤1

Vậy đkxđ của biểu thức là [�≥3�≤1
 

Bình luận (0)
DC
15 tháng 8 2023 lúc 19:32

hơi khó nhìn ạ

 

Bình luận (0)
TN
Xem chi tiết
ML
17 tháng 11 2021 lúc 17:00

\(a,ĐK:2-x^2\ge0\Leftrightarrow x^2\le2\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\\ b,ĐK:5x^2-3>0\Leftrightarrow x^2>\dfrac{3}{5}\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{15}}{5}\\x< -\dfrac{\sqrt{15}}{5}\end{matrix}\right.\\ c,ĐK:-\left(2x-1\right)^2\ge0\Leftrightarrow x=\dfrac{1}{2}\\ d,ĐK:x^2+x-2>0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

Bình luận (0)
AN
Xem chi tiết
BS
Xem chi tiết
NT
12 tháng 5 2022 lúc 19:10

a: ĐKXĐ: (x-1)(x-3)>=0

=>x>=3 hoặc x<=1

b: ĐKXĐ: (x-4)(x-3)>=0

=>x>=4 hoặc x<=3

c: ĐKXĐ: (x-5)(x-4)>=0

=>x>=5 hoặc x<=4

Bình luận (0)
H24
Xem chi tiết
TG
16 tháng 5 2021 lúc 15:32

a) ĐK: x ≥ 2

\(\sqrt{3x-6}=3\)

\(\Leftrightarrow3x-6=9\)

<=> 3x = 15

<=> x = 5

Vậy:....

b) ĐK: 5x - 16 ≥ 0

<=> 5x ≥ 16

<=> x ≥ 16/5

\(\sqrt{5x-16}=2\)

<=> 5x - 16 = 4

<=> 5x = 20

<=> x = 4

c) ĐK: \(x^2-4x+3\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

Bình luận (2)
NM
16 tháng 5 2021 lúc 15:33

bình phương hai vế ta được:

a)điều kiện của x:x≥2

3x-6=9 <=> x=5(nhận)

b)ĐK: x≥16/5

5x-16=4 <=>x=4(nhận)

c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)\(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)

ĐKXĐ: x≠3 ;x≠1

Bình luận (0)
MY
16 tháng 5 2021 lúc 15:42

a,\(\sqrt{3x-6}=3\) (với x\(\ge\)2)

=>\(\left(\sqrt{3x-6}\right)^2=3^2\)

<=>\(3x-6=9\)<=>\(3x=9+6\)<=>x=\(\dfrac{15}{3}\)=5(thỏa mãn)

b,\(\sqrt{5x-16}=2\) (với x\(\ge\)16/5)

=>\(\left(\sqrt{5x-16}\right)^2=2^2\)<=>\(5x-16=4< =>5x=20< =>x=4\)(thỏa mãn)

c,B xác định khi \(x^2-4x+3\ne0< =>x^2-2.2.x+2^2-1\ne0\)

\(< =>\left(x-2\right)^2-1\ne0\)

\(< =>\left(x-2+1\right)\left(x-2-1\right)\ne\)0

\(< =>\left(x-1\right)\left(x-3\right)\ne0\)

\(< =>\left[{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

Bình luận (0)
MD
Xem chi tiết
H24
Xem chi tiết
TV
13 tháng 6 2018 lúc 20:47

trả lời:

đkxđ:x>0

Bình luận (0)
PQ
13 tháng 6 2018 lúc 20:50

ĐKXĐ : \(-x^2+6x-9\ge0\)

\(\Leftrightarrow\)\(-\left(-x^2+6x-9\right)\le0\)

\(\Leftrightarrow\)\(x^2-6x+9\le0\)

\(\Leftrightarrow\)\(\left(x-3\right)^2\le0\)

Mà \(\left(x-3\right)\ge0\)

Suy ra : \(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Chưa học nên sai thì thôi nhé =.=" 

Chúc bạn học tốt ~ 

Bình luận (0)
NT
Xem chi tiết
H9
15 tháng 8 2023 lúc 9:05

a) \(\sqrt{\left|x-1\right|-3}\) 

Với \(x\ge1\) thì

\(\sqrt{x-1-3}=\sqrt{x-4}\) được xác định khi:
\(x\ge4\)

Với \(x< 1\) thì

\(\sqrt{-\left(x-1\right)-3}=\sqrt{-x+1-3}=\sqrt{-x-2}\) được xác đinh khi:

\(x\le-2\)

Bình luận (3)
H24
15 tháng 8 2023 lúc 9:16

\(a,\sqrt{\left|x-1\right|-3}\) xác định \(\Leftrightarrow\left|x-1\right|-3\ge0\Leftrightarrow\left|x-1\right|\ge3\)

\(TH_1:x\ge1\\ x-1\ge3\Leftrightarrow x\ge4\left(tm\right)\\ TH_2:x< 1\\ x-1\ge-3\\ \Leftrightarrow x\ge-2\left(tm\right)\)

Vậy căn thức trên xác định \(\Leftrightarrow x\ge4\)

\(b,\sqrt{x-2\sqrt{x-1}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}\le\dfrac{x}{2}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1\le\dfrac{x^2}{4}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x-4-x^2\le0\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-\left(x^2-4x+4\right)\le0\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2\ge0\left(LD\right)\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)

Vậy căn thức trên xác định \(\Leftrightarrow x\ge1\)

\(c,\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(3-2x\right)^2}}=\dfrac{1}{3-2x}\) xác định \(\Leftrightarrow3-2x\ne0\Leftrightarrow x\ne\dfrac{3}{2}\)

Vậy căn thức trên xác định \(\Leftrightarrow x\ne\dfrac{3}{2}\)

 

 

Bình luận (1)
H9
15 tháng 8 2023 lúc 9:07

c) \(\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(3-2x\right)^2}}=\dfrac{1}{3-2x}\) 

Xác định khi:

\(3-2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{3}{2}\)

Bình luận (0)