Tính tổng A biết A=(121-2^2)*(121-3^2)*...*(121-2011^2)
Tính giá trị biểu thức
A= (121-22) (121-32) ... (121-20112)
Tìm 2 số nguyên a, b biết a>0 và a.(b-2)=3
A=(121-22)(121-32)...(121-112)...(121-20112)
A=(121-22)(121-32)...0...(121-20112)
A=0
Cảm ơn nhìu
Tính tổng:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
Tổng quát:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow S=\dfrac{10}{11}\)
Ta có công thức tổng quát như sau:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)
\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)
Áp dụng vào tổng S ta có:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)
\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)
(121-12).(121-22).(121.23).....(121-292)
Tính kết quả
(121-1^2)*(121-2^2)*...*(121-11^2)*...*(121-29^2)=(121-1^2)*(121-2^2)*...*(121-121)*...*(121-29^2)=(121-1^2)*(121-2^2)*...*0*...*(121-29^2)=0
Tính :
(121 - 12).(121 - 22).(121 - 32)...(121 - 112)
ta có
(121-12).(121-22).....(121-112)
= (112-12).(112-22).....(112-112)
= (121-12).(112-22).....0
= 0
Tính :
B =( 121-12 )(121-22)...(121-292)
\(B=\left(121-1^2\right)\left(121-2^2\right)...0...\left(121-29^2\right)\)
\(B=0 \)
TÍNH A=2/39-1/15-2/153 ///// 1/34+3/20-3/26
B=1+2/71-5/121 ///// 65/121-26/71-13
TÍNH A:B
MONG CÁC BẠN GIÚP
Gọi C=\(\frac{\frac{2}{39}-\frac{1}{15}-\frac{2}{153}}{\frac{1}{34}+\frac{3}{20}-\frac{3}{26}}:\frac{1+\frac{2}{71}-\frac{5}{121}}{\frac{65}{121}-\frac{26}{71}-13}\)
=\(\frac{\frac{-4}{9}\cdot\left(\frac{1}{34}+\frac{3}{20}-\frac{3}{26}\right)}{-\left(\frac{1}{34}-\frac{3}{20}-\frac{3}{26}\right)}:\frac{1+\frac{2}{71}-\frac{5}{121}}{-13\cdot\left(\frac{2}{71}-\frac{5}{121}+1\right)}\)
=\(-\frac{4}{9}:-\frac{1}{13}=-\frac{4}{9}\cdot\left(-13\right)=\frac{\left(-4\right)\cdot\left(-13\right)}{9}=\frac{52}{9}\)
B=(121-12) x (121-22) x (121-32) ... x (121-292)
\(B=\left(11^2-1^2\right)×...×\left(11^2-11^2\right)×...×\left(11^2-29^2\right)\)
\(B=0\)
tính A=\(\frac{\frac{2}{39}-\frac{1}{15}-\frac{2}{153}}{\frac{1}{85}+\frac{3}{50}+\frac{3}{65}}:\frac{1+\frac{2}{71}-\frac{5}{121}}{\frac{65}{121}-\frac{26}{71}-13}\)
THỰC HIỆN:
A=\(\frac{\frac{2}{39}-\frac{1}{15}-\frac{2}{153}}{\frac{1}{34}+\frac{3}{20}-\frac{3}{26}}:\frac{1+\frac{2}{71}-\frac{5}{121}}{\frac{65}{121}-\frac{26}{121}-13}\)